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Abstract. This paper proposes a method for generating expressive and
distinctive recipe names by identifying each recipe’s unique features rel-
ative to others in the same collection. For example, when most recipes
boil pasta in a pot, our method may generate a descriptive recipe name
like “One-Pan Carbonara” for a recipe that completes the dish using a
single frying pan only. The method detects ingredients, cooking proce-
dures, and utensils that are statistical outliers, either significantly more
or less frequent compared to the rest of the recipe set. These distinguish-
ing features are then passed to a fine-tuned large language model, which
generates the final recipe name. A user study showed that the proposed
method produces accurate and appealing names that effectively highlight
the distinctiveness of each recipe.
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1 Introduction

In recent years, user-generated recipe-sharing platforms have seen a rapid in-
crease in the number of submitted cooking recipes. For instance, over 500,000
recipes have been posted on Food.com1, and more than 50,000 on Allrecipes2.
With such a vast number of available recipes, it has become increasingly challeng-
ing for users to find one that suits their preferences or cooking needs efficiently.

One contributing factor is that user-submitted recipes often have names that
fail to convey the actual characteristics of the dish. Many recipes are given
vague or generic names, such as “Delicious Carbonara” or “Homestyle Chicken
Rice,” which provide little information about ingredients, cooking methods, or
distinctive features. As a result, even when a recipe includes unique ingredients
or preparation steps, users cannot infer those details from the recipe name alone.
For example, on Food.com, there are over 300 different recipes for Carbonara,
a simple cream-based pasta, making it hard to distinguish among them based
solely on their names. Consequently, users are often forced to click through
numerous recipes and read the full content to determine whether a recipe meets
their specific needs.
1 Food.com: https://www.food.com/
2 allrecipes: https://www.allrecipes.com/
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processes: heat, dissolve, 
chill  
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tools: frying pan, lid  
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Fig. 1. An input-output example of the proposed method. Features are extracted from
the recipe, a recipe-difference feature description is created, and the model generates
a recipe name based on that input.

To address this search difficulty, we propose a method for generating concise
recipe names that highlight each recipe’s distinctive features. A key observation
is that the characteristics of a recipe are best understood not in isolation, but
in comparison with other recipes within the same category. For example, stating
that a dish “uses eggs” may be informative when most similar recipes do not, as in
the case of labeling a pasta dish “Egg-Based Peperoncino” (i.e., most Peperoncino
do not use egg). However, for a dish like the “Omurice”, a Japanese fried rice
wrapped in omelet, where eggs are a common ingredient across recipes, a name
such as “Omurice with Egg” fails to convey any distinctiveness. This illustrates
the importance of identifying features in a relative context, highlighting what
distinguishes a recipe from others in the collection.

Even when such relative features are successfully identified, they must be
expressed in a way that is both concise and understandable to human users in
order to be practically useful. For instance, in the pasta category, most recipes
boil pasta in a pot. However, some recipes boil the pasta directly in a frying pan
and complete the dish without using a pot at all. In this case, the absence of a
pot serves as the distinguishing feature, and such recipes are often referred to as
“One-Pan Pasta.” For users unfamiliar with recipe search or culinary terminol-
ogy, articulating these features in a short and meaningful phrase can be challeng-
ing. Therefore, assigning appropriate descriptions requires not only identifying
relative features but also generating natural and intuitive language to describe
them.

To verbalize the relative features of a recipe, we adopt a generative large lan-
guage model (LLM). Figure 1 shows an overview of our method. Our approach
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takes as input a target recipe and a collection of recipes in the same category. It
extracts a brief description of the ingredients, cooking procedures, and utensils
that distinguish the target recipe from others. Based on these distinguishing fea-
tures, it generates and ranks multiple candidate names that reflect the recipe’s
distinctiveness within the category. To ensure that the generated names are easy
to understand and natural-sounding, we fine-tune the large-scale pre-trained lan-
guage model T5 (Text-to-Text Transfer Transformer) [5] on a set of comparative
descriptions and recipe names.

We performed data cleansing on a large-scale Japanese recipe dataset and
fine-tuned the model using the processed data. To ensure high-quality training
signals, we selected only those recipes whose names and content exhibited clear
and distinctive features. This enabled the model to learn to generate recipe
names that effectively reflect the unique characteristics of previously unseen
recipes.

We evaluated our method through a subject experiment to assess whether the
generated names accurately captured the relative distinctiveness of each recipe.
Participants rated how well each generated name reflected the uniqueness of the
target recipe within its comparison set. The experimental results demonstrate the
effectiveness of our approach in identifying and verbalizing distinctive features
in recipe naming.

2 Related Work
This study aims to extract the relative features of a given recipe and gener-
ate a natural-language description that reflects those features. To achieve this,
we compare the target recipe with others in the same category and construct
a “recipe difference description” in an interpretable format. This process can
be regarded as a form of abstractive text summarization guided by contrastive
analysis.

2.1 Text Feature Analysis
Various studies have investigated the extraction of distinctive features from text,
beyond the domain of cooking recipes. Yan et al. [11] proposed a method that
uses large language models (LLMs) to compare pairs of documents and select
the more appropriate one. Similarly, Zhong et al. [12] developed a technique
to generate feature descriptions from two document sets using LLMs. Unlike
these approaches, our study utilizes LLMs solely for description generation; the
extraction of recipe features is performed using an outlier-based method.

Wan et al. [8] proposed a technique for document classification based on
identifying bi-grams that capture distinctive textual features. Setiawan et al. [6]
improved classification performance in bullying detection by combining TF-IDF
scores with word occurrence statistics and task-specific pre-filtering. In contrast,
our work analyzes textual features not for classification, but to generate recipe
names that reflect relative distinctiveness.

2.2 Cooking Recipe Analysis and Application

Cooking recipes differ from general text due to their domain-specific structure,
which complicates the application of conventional similarity-based methods.
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Wang et al. [9] represented recipes as workflow graphs to compute similarity.
Jermsurawong et al. [4] proposed a tree-structured representation of recipes to
support recipe retrieval. These studies transformed recipe text into structured
formats to enhance interpretability. Our approach similarly transforms recipes,
but focuses on clarifying distinctive features by constructing a “recipe difference
description.”

Our method extracts characteristic elements by comparing a single recipe
against others in the same category. Hanai et al. [3] extracted ingredients from
recipe names and identified distinctive ingredients based on their frequency
within a category. Yamakata et al. [10] proposed a method to extract features
from workflow graph representations of recipes. In contrast, our work considers
the absence of ingredients or utensils as distinctive features, and translates these
features into natural language recipe names.

2.3 Abstractive Summarization
Generating recipe descriptions from input recipes is closely related to abstractive
summarization. Su et al. [7] proposed a two-stage method in which extractive
summaries of text segments are generated first, followed by abstractive sum-
marization using a language model. Dou et al. [2] introduced a method that
incorporates extractive summaries as guiding signals for the generation process.
Similarly, our approach does not directly summarize recipe text. Instead, we
first convert each recipe into a “recipe difference description,” which is then used
as input to a language model to generate an abstractive name. Whereas previ-
ous work primarily employed automatic evaluation, our study includes human
evaluation. We adopt conventional evaluation criteria such as accuracy, fluency,
and attractiveness, and additionally introduce a new perspective: the degree to
which the generated name reflects the recipe’s distinctive features.

3 Generating Recipe Names Reflecting Relative Recipe
Features

In this section, we describe the full method for generating a Descriptive Recipe
Name that reflects the relative features of a target recipe within a given set of
recipes. As illustrated in Figure 1, the proposed method consists of two main
components:
1. generating a Recipe Difference Description (RDD), and
2. generating a recipe name using a large language model.

However, to realize this process, both preprocessing and postprocessing steps
are required. Therefore, we explain the method step by step, in the manner of a
cooking recipe.

First, we construct domain-specific dictionaries. These dictionaries are then
used to extract the relative features of the target recipe and generate the cor-
responding RDD. Next, we perform data cleansing to construct high-quality
training data, and fine-tune the LLM using this data. Once the model is trained,
it generates multiple candidate recipe names from a given input RDD. Finally,
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the candidates are ranked based on typicality within the generated set, and the
top-ranked name is selected as the final Descriptive Recipe Name.

3.1 Constructing Cooking Term Dictionaries

Before extracting recipe features, we constructed domain-specific dictionaries
to facilitate the effective processing of user-submitted recipes. Specifically, we
created dictionaries for identifying ingredients, cooking procedures, and utensils
mentioned in recipe texts. The entries were collected semi-automatically, primar-
ily from structured metadata on recipe-sharing websites, Wikipedia, and other
sources containing enumerated lists of relevant terms.

The ingredient dictionary was constructed from metadata obtained from a
recipe-sharing website. Each recipe typically includes, as metadata, a structured
list of required ingredients. We cleansed and normalized this metadata to con-
struct the dictionary. Ingredients that appeared infrequently or exhibited incon-
sistent notation were removed during preprocessing.

The dictionaries for cooking procedures and utensils were built using Wikipedia
as the primary source. We extracted cooking procedure terms, such as “shred,”
“dice,” “boil,” and “fry,” from section headings in Wikipedia articles. We fo-
cused on cooking-related categories and subpages (e.g., “Cooking Techniques”3,
“Japanese Cooking Utensils”4). The extracted lists were manually refined: only
appropriate verb forms were retained for cooking procedures and were converted
into standardized forms. The utensil list was constructed with fine granularity,
capturing even small distinctions (e.g., several variations of cooking knives).

3.2 Extracting Relative Features and Constructing Recipe
Difference Descriptions (RDD)

To generate recipe names that reflect a recipe’s distinctive characteristics, our
method first constructs a textual representation of the recipe’s relative features,
called a Recipe Difference Description (RDD). Figure 2 illustrates the structure
of a Recipe Difference Description (RDD). It is a plain-text format with field
names followed by colons and comma-separated terms, consisting of single-recipe
features extracted using dictionaries and relative features identified via outlier
detection. This RDD captures how the target recipe differs from other recipes
in the same category, focusing on ingredients, procedures, and utensils.

Identifying Basic Recipe Elements: We begin by extracting basic elements
from each recipe: the category, ingredients, procedures, and tools. The category is
obtained from metadata or inferred from the recipe name. To extract ingredients,
3 Wikipedia “Cooking Technique” (in Japanese)

https://ja.wikipedia.org/wiki/%E8%AA%BF%E7%90%86%E6%B3%9
4 Wikipedia “Japanese Cooking Utensils” (in Japanese)

https://ja.wikipedia.org/wiki/%E6%97%A5%E6%9C%AC%E3%81%AE%E8%AA
url%BF%E7%90%86%E5%99%A8%E5%85%B7
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Our Special Carbonara

1. Boil spaghetti in 
    salted water with pot.  
2. Fry garlic and salmon 
     in olive oil in pan.  
3. Mix with soy milk and
    grated cheese.  
4. Serve topped with
     parsley and black 
     pepper.

Original recipe text RDD text

category: carbonara  
ingredients: spaghetti, 
garlic, salmon, soy milk, 
cheese, parsley  
procedures: boil, fry, mix  
tools: pot, frying pan 
 
differences: +salmon, 
+soy milk, -egg, -bacon  
feature_words: grated, 
topped

Using dictionaries to 
identify ingredients, 
tools, and actions

Extracted from Single Recipe

Differences: 
Outlier ingredients, tools, or procedure
compared to other recipes.
      ‘+’ = uniquely used; 
      ‘-’ = typically used but missing
Feature Words:
Rare stylistic terms unique to the 
recipe (e.g., adjectives, onomatopoeia)

Relative Features via Comparison

Format:
Field name followed by a colon and 
a comma-separated list of terms

Fig. 2. Example of Recipe Difference Description (RDD). An RDD is generated from
the original recipe text by extracting basic features and identifying relative differences
compared to other recipes.

Carbonara A

Carbonara B

Carbonara C

Carbonara F

bacon and 
pasta into
pot, boil

Put salmon,
pasta into
pot

Salted water
in pot and 
fry bacon

Fry Sliced 
bacons with
pan, pasta
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1 0 1 1 0 0 0 0 0 1 1 0 1
cu
t
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Minor class should be an Outlier

Fig. 3. Example of outlier detection with multi-hot vectors. Recipes are represented as
multi-hot vectors. Outliers, such as a recipe missing “pot,” are detected using the 3σ
rule within each category.

procedures, and tools, we use the dictionaries constructed in the previous step.
We perform morphological analysis on the recipe text and extract any tokens
that match dictionary entries, classifying them accordingly.

Identifying Relative Feature using Outlier Detection Next, we identify
which elements in the target recipe are relatively distinctive compared to others
in the same category. We define two types of relative features:

– Inclusion-based differences: elements that are rare across the category but
present in the target recipe, and

– Exclusion-based differences: elements that are common in the category but
missing in the target recipe.

For example, if a “Carbonara” recipe uses chicken instead of the usual pork
pancetta, or omits the use of a pot, these are treated as relative differences.
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To identify what makes a recipe distinctive, we adopted the Outlier Detection
technique, such as the 3σ method, as shown in Fig. 3. To enable such outlier
detection, each recipe is represented as a multi-hot vector, where each dimension
corresponds to an ingredient or other feature. Let R be the set of recipes in a
given category, and let each recipe be denoted as ri ∈ R. We represent each
recipe ri as a binary vector v(ri) = (vi1, vi2, . . . , vin), where each dimension
vij ∈ {0, 1} indicates whether the j-th element (ingredient, tool, or action) is
present in the recipe.

We define the average frequency of element j across the category as:

σ(R,n) =

√∑
ri∈R(

∑ vrin

|R| − vrin)
2

|R|
, (1)

where the average value AV G of each dimension (i.e.,
∑ vrin

|R| ), and define out-
liers using the following condition:

vrin < AV G− 3σ,vrin > AV G+ 3σ. (2)

Now that outlier-based features have been identified, they are compiled into
a single RDD text. As illustrated in the figure 2, the RDD is structured as
a list of field names and their corresponding values. If the outlier condition is
satisfied, the corresponding ingredient, action, or utensil is marked as a difference
indicator. We denote such features with plus sign if they are present in the recipe
but rare in the category (e.g., +pot if only the target recipe uses a pot while
most others do not), and with minus sign if they are absent from the recipe but
common in others (e.g., -egg if the recipe is unusual in not using eggs).

In addition to these structured features, we extract feature terms, such as
rare words that appear in the recipe but are uncommon within its category.
Unlike difference indicators, which are limited to predefined dictionaries, feature
terms are selected from the entire recipe text. To identify them, we tokenize the
recipe, compute word frequencies within the category, and select those in the
bottom 10%. Words such as roughly or fluffy may be included if they are rare
enough. These terms help capture stylistic or perceptual nuances in the recipe.

3.3 Dataset Cleansing for Selecting Distinctive Recipe–Name Pairs

Now that any recipe can be transformed into a Recipe Difference Description
(RDD), a language model can be fine-tuned to generate recipe names from these
representations. However, most user-generated recipes are either unremarkable
or assigned generic names that fail to capture their distinctive characteristics.
For instance, even a creative variation of carbonara may be titled “Our Family’s
Carbonara” or “Tasty Carbonara,” offering no indication of its uniqueness.

To construct effective training data, we first identified recipes with content-
level distinctiveness by counting their difference indicators (as defined in Sec-
tion 3.2) and computing the mean and variance per category. Recipes exceeding
the threshold based on the 3σ rule were retained.
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Among these, we further selected those with distinctive recipe names. For
each word in a name, its frequency within the category and across all categories
was computed. To emphasize category-specific uniqueness, a distinctiveness score
was calculated as the ratio of category frequency to global frequency.

For example, “salmon” frequently appears in recipe names within the sushi
category, but rarely in Caesar salad. A recipe named “Grilled Salmon Caesar
Salad” would therefore include “salmon” as a distinctive term, illustrating the
importance of category-aware scoring.

We computed the overall distinctiveness of a recipe name by summing the
scores of its component words. Formally, let C = {C1, C2, . . . , Ck} be the set of
categories, R(c) the set of recipes in category c, and W the vocabulary. For a
word t ∈ W , defined as:

fcat(t, c) =

∑
r∈R(c) frec(t, r)∑
r∈R frec(t, r)

. (3)

We used this score to select recipe–name pairs with high recipe name distinc-
tiveness as training data.

3.4 LLM Fine-tuning and Recipe Name Candidate Generation

Given the large set of recipe pairs, each consisting of a Recipe Difference De-
scription (RDD) and a corresponding distinctive recipe name, we fine-tune a
language model to generate recipe names that reflect relative characteristics.

We employ T5 (Text-to-Text Transfer Transformer), a large language model
specifically designed for text-to-text transformation tasks. Since T5 naturally
supports input-output text mapping, the model can be trained in the same
format as used during inference. Specifically, the RDD is used as input, and the
distinctive recipe name as the target output.

The fine-tuned model learns to generate recipe names that express salient and
distinctive traits, even for previously unseen recipes. To obtain diverse candidate
names for a given recipe, the model can generate multiple outputs by varying the
random seed. In practice, a target recipe is first converted into its RDD form,
which is then passed to the model to produce a list of name candidates.

Examples of generated recipe names are shown in Table 1. These include
expressions that articulate unique aspects of the recipe, such as indicating the
use of leftovers or frozen rice, whereas the original recipe names merely included
generic phrases like “easy” or “home-style.”

3.5 Typicality-Aware Re-ranking of Generated Recipe Names

The first candidate generated by a language model is not always the most appro-
priate. To improve the quality of recipe names, we generate multiple candidates
and re-rank them to select the most representative one. The re-ranking is based
on two criteria: whether the candidate includes the category name (e.g., “car-
bonara”), and how typical the candidate is among all generated recipe names.
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Table 1. Examples of recipe names generated from RDDs using the fine-tuned model.

Original name (translated from Japanese) Generated name (translated from Japanese)
Pork Belly and Tomato Negi-Salt Peperoncino Pork Belly and Tomato Peperoncino
First-Ever Stuffed Cabbage Rolls Pressure-Cooked Stuffed Cabbage Rolls
Easy and Delicious Braised Pork Braised Pork in a Pressure Cooker
Nostalgic Hayashi Rice(^^) Flavorful Meat♪Hayashi Rice
Salmon Meunière with Lemon Soy Sauce Salmon Meunière with Mushroom Butter Soy Sauce
Easy Chicken&Tomato Risotto Spicy Chicken and Onion Risotto
Crushed Coffee Jelly Coffee Jelly with Milk Syrup Using Agar Powder
Simple Meat and Potato Pouch with Leftovers Easy Salad with Leftover Meat and Potatoes
Easy Curry Risotto Tomato Risotto with Frozen Rice

Specifically, we generate 100 candidate recipe names for each input. Candi-
dates that do not include the category name are first filtered out. For example,
if the input belongs to the “carbonara” category, we discard any name that does
not contain the word “carbonara.”

Then, we calculate a typicality score for each remaining recipe name based
on the frequency of words within the candidate set. Let T = t1, t2, ..., tn be the
set of generated names, and w ∈ W a word in the names. The typicality score
s(ti) of a name ti is defined as:

s(ti) =
∑
w∈ti

f(w) (4)

where f(w) denotes the frequency of word w in T . The name with the highest
score is selected as the final output. This enables the system to reliably generate
recipe names that highlight how the target recipe differs from others in the set,
while ensuring that the final output includes the appropriate category name
through a typicality-based re-ranking process.

4 Evaluation

To evaluate the effectiveness of the proposed recipe name generation method,
we conducted both automatic and human evaluations. The automatic evaluation
focuses on the linguistic quality of the generated names. In contrast, the human
evaluation examines whether the names are appropriate and appealing as recipe
names. In particular, it evaluates how well each name reflects the distinctive
characteristics of the corresponding recipe within its category. To support these
evaluations, we prepared a large-scale recipe dataset and implemented a complete
system capable of generating a recipe name for any given input.

4.1 Dataset

We used the Cookpad Dataset, provided by Cookpad Inc. and the National Insti-
tute of Informatics [1], which contains over 1.7 million user-submitted Japanese
recipes, including names, ingredient lists, and preparation steps. To assign a
recipe category to each entry, we compiled a list of 261 general dish names, such
as “beef stew” and “fried rice”, and assigned recipes to a category if their names
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included any of these terms. Recipes that could not be categorized in this way
were excluded from further processing.

For training, we selected a subset of 2,406 recipes that exhibited distinctive
characteristics both in their content and their recipe name, based on an outlier-
based filtering approach (see subsection 3.3). These were used to fine-tune our
recipe name generation model.

4.2 Baseline Methods
To clarify the contribution of each component in our proposed method, we con-
ducted an ablation study using several variant models. Each variant removes
one or more specific components from the full proposed pipeline, allowing us to
assess which design choices are most effective and how they affect the overall
performance.

The baseline methods are as follows:

– Without Differences: A variant that removes the relative difference indi-
cators (e.g., +microwave, -pot) from the input.

– Without Feature Words: A variant that omits stylistic or perceptual
feature terms (e.g., “fluffy”, “roughly”) from the input.

– Full Recipe Text: A variant that uses the entire recipe text as input,
without any structured representation such as recipe difference descriptions.

– Random Training Data: A variant trained on 2,406 recipes randomly
sampled from the dataset, instead of selecting ones with distinctive content
and names.

By comparing the output quality and evaluation scores of these variants
against the proposed method, we aim to reveal the role each design component
plays, such as the value of contrastive features, stylistic cues, and curated training
data, in generating accurate and expressive recipe names.

4.3 Implementation

To evaluate the proposed method, we implemented a system that trains the
model and generates recipe descriptions. We used the Hugging Face Transformers
library5, which provides support for transformer-based models, to implement T5.
We used a Japanese pretrained version of T56 as the base model.

For fine-tuning, we adopted the default parameter settings provided by Hug-
ging Face Transformers. The maximum number of tokens for the input was set
to 512, and for the output to 64. Fine-tuning was conducted using the dataset
described in Section 4.1.

Since the dataset consists of Japanese texts, word boundaries are not explic-
itly marked by whitespace as in English. Therefore, we applied morphological

5 Hugging Face “Hugging Face Transformers”
https://huggingface.co/docs/transformers/index

6 Hugging Face “sonoisa/t5-base-japanese”
https://huggingface.co/sonoisa/t5-base-japanese
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Table 2. ROUGE scores for automatically generated recipe names

Method ROUGE-1 ROUGE-2 ROUGE-L
Proposed Method 0.40 0.18 0.38

Without Differences 0.41 0.18 0.39
Without Feature Words 0.55 0.38 0.54

Full Recipe Input 0.40 0.15 0.38
Random Training Data 0.41 0.18 0.39

analysis to segment recipe texts and names into word units. We used MeCab7, a
widely-used Japanese morphological analyzer, for this task. To enhance coverage
of contemporary and domain-specific terms, we used the mecab-ipadic-NEologd8

dictionary, which incorporates many neologisms and frequently updated vocab-
ulary.

4.4 Automatic Evaluation of Recipe Name Linguistic Quality

We conducted an automatic evaluation to assess the linguistic quality of the
generated recipe names. While our primary goal is to generate names that reflect
the distinctive features of each recipe, it is also important to examine whether
the outputs are fluent and reasonably consistent with names written by actual
users.

To this end, we used ROUGE scores, a standard metric in abstractive sum-
marization, to measure the textual similarity between generated names and user-
assigned names in the dataset. It is worth noting, however, that user-generated
recipe names do not always reflect the relative uniqueness of each recipe. There-
fore, ROUGE scores provide only a surface-level approximation of output quality,
rather than a true measure of distinctive feature reflection.

The calculated ROUGE scores are shown in Table 2. Among all methods,
the variant without feature words achieved the highest scores across all ROUGE
metrics, likely due to its tendency to produce concise names closely aligned with
those commonly found in the dataset.

4.5 Human Evaluation of Recipe Name Appropriateness

To assess whether the generated recipe names are appropriate as recipe names,
we conducted a human evaluation focusing on three key aspects: fluency, attrac-
tiveness, and the degree to which the name reflects the distinctive features of the
recipe. Unlike automatic metrics, which measure textual similarity to reference
names, human judgment is necessary to evaluate whether a name truly highlights
what makes a recipe unique within its category. This is particularly important
in our task setting, where user-assigned recipe names in the dataset often fail
to express relative distinctiveness, making automatic evaluation insufficient for
a complete assessment.
7 MeCab

https://taku910.github.io/mecab/
8 mecab-ipadic-NEologd

https://github.com/neologd/mecab-ipadic-neologd
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To evaluate whether each generated recipe name successfully conveys what
makes the target recipe distinctive, we designed a comparative evaluation setting.
The key idea was to allow participants to assess the name’s appropriateness
from multiple perspectives, including whether it accurately reflects the recipe’s
ingredients, reads fluently, appears attractive, and captures distinctive features
in comparison to similar recipes.

In each trial, participants were shown one target recipe and five comparison
recipes randomly selected from the same category. After reviewing the recipes,
they were presented with a generated recipe name and asked to evaluate it based
on the four criteria above. The experiment was conducted using ten different
target recipes, each evaluated using recipe names generated by the proposed
method and four baseline methods.

To comprehensively assess the quality and appropriateness of each generated
recipe name, we designed four evaluation criteria. These criteria were chosen to
cover both surface-level and semantic aspects of recipe names, including lexi-
cal correctness, fluency, persuasive appeal, and the ability to express relative
distinctiveness within a recipe category.

Two participants rated each generated recipe name using the following four
criteria:
1. Ingredient Accuracy: Are the ingredients mentioned in the name actually

used in the recipe?
2. Fluency: Is the name natural and grammatically correct in Japanese?
3. Attractiveness: Does the name convey the appeal of the recipe?
4. Feature Reflection: Compared to other recipes, does the name highlight

what makes this recipe distinctive?
Each question was rated on a 5-point scale. For ingredient accuracy, we adopted
a flexible interpretation to account for synonyms and ingredient granularity. For
example, if a recipe uses “king crab” but the name simply says “crab,” the rating
may still reflect partial correctness. Conversely, if a recipe only uses standard
crab meat, but the name claims “king crab,” the rating would be reduced accord-
ingly. The 5-point scale allows for such nuanced evaluation. Given the substantial
inter-rater reliability, Cohen’sκ = 0.65 > 0.60, two raters were deemed sufficient.

For fluency and attractiveness, participants evaluated whether the name was
natural in Japanese and whether it expressed some form of appeal beyond generic
terms. For instance, while phrases like “super tasty” may sound appealing, they
are too vague to convey meaningful information. A good name should highlight
a specific quality of the dish, such as “crispy,” “spicy,” or “oven-baked.”

For feature reflection, participants first identified what distinguished the tar-
get recipe from the five comparison recipes, then judged whether the recipe
name captured that difference. For example, in the “lasagna” category, if most
comparison recipes use beef but the target recipe uses eggplant and no meat,
this vegetarian variation would be considered distinctive. Participants then eval-
uated whether the recipe name reflected this uniqueness, such as by including
“vegetarian” or “eggplant.”

Table 3 shows the average scores for each method across the four evalua-
tion criteria. The proposed method achieved the highest scores in three out of
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Table 3. Average scores for each evaluation criterion (1–5 scale). Asterisks indicate
statistically significant differences from the proposed method (* p < 0.05, ** p < 0.01)
in Student’s t-test.

Evaluation Criterion Ingredient Accuracy Fluency Attractiveness Feature Reflection

Proposed Method 4.58 3.60 3.60 3.83
Without Differences **3.78 3.78 *3.03 **2.70

Without Feature Words *4.10 3.20 3.08 **3.00
Full Recipe Input **3.23 3.95 **2.28 **2.28

Random Training Data 4.35 3.45 3.28 *3.33

four criteria: Ingredient Accuracy (4.58), Attractiveness (3.60), and Feature Re-
flection (3.83). In contrast, methods that removed relative difference indicators
or stylistic feature words showed significant drops, particularly in Feature Re-
flection. The variant using full recipe text performed worst in most categories,
despite having the longest input.

These results suggest that both the structured input format and the curated
training data contributed to the improved quality of the generated recipe names,
especially in capturing what makes each recipe distinctive.

5 Discussion

In this section, we discuss the results obtained from the evaluation experiments.
In the ROUGE score evaluation, the method that excluded feature words from
the input achieved the highest score. Recipe names generated using the method
without feature words tended to be short and concise overall. Specifically, many
of the recipe names consisted of a combination of ingredient names and dish
names, such as “Mackerel Peperoncino.” Since the actual recipe names given to
most recipes typically include both ingredient and dish names, this likely led to
higher ROUGE scores.

However, even when recipe names express similar characteristics, ROUGE is
unable to properly evaluate them if they are described differently. For example,
recipes that do not use a frying pan or pot might have recipe names containing
expressions like “quick”, “easy”, or “no heat required”. Although these all reflect
the same feature, ROUGE would treat them as mismatches because the exact
words differ. On the other hand, concise recipe names composed of ingredients
and dish names tend to result in higher ROUGE scores. When less input infor-
mation is provided, it is more likely that the ingredient names used in the recipe
are directly reflected in the generated recipe name.

Next, we discuss the results obtained from the human evaluation. For ingre-
dient accuracy, the recipe names generated by the method that directly inputs
the entire recipe scored the lowest. This suggests that simply feeding the full
recipe into the language model does not result in accurate reflection of ingredi-
ent names. Although this approach had the longest input length compared to
other methods, the proposed method, which uses a more structured input, out-
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performed even the shorter “without differences” method in terms of ingredient
accuracy, demonstrating the effectiveness of our approach.

We now turn to the evaluation of attractiveness and feature reflection. The
proposed method achieved the highest scores for both criteria, while the recipe-
based method had the lowest. This suggests that better feature reflection may
contribute to higher perceived attractiveness. For instance, a recipe name like
“One-Pan Pasta” highlights the feature of requiring only a frying pan, which
can make the recipe more appealing. Thus, improving feature reflection likely
enhances attractiveness as well.

Titles that scored highly for both attractiveness and feature reflection often
included ingredient names that are uncommon in that category. For example,
in a hamburger recipe using shiso leaves and zucchini, the recipe name that
accurately reflected both the ingredients and the dish name received a high
evaluation. Moreover, not only unique ingredients but also the absence of certain
cooking tools or processes contributed to perceived simplicity and higher scores.
In the case of a fried rice recipe using frozen rice, recipe names containing terms
like “easy” or “time-saving” were rated highly in both attractiveness and feature
reflection. This recipe did not involve cooking rice, so the absence of elements
like “rice cooker” or “cooking rice” appeared in the difference expressions and
enabled the model to verbalize that feature in the generated recipe name.

Overall, the results confirm that incorporating relative difference indicators
and stylistic features into the input leads to more informative and appealing
recipe names. These findings highlight the importance of explicitly modeling
contrastive features when generating names that are both expressive and con-
textually appropriate.

6 Conclusion and Future Work

This paper presented a method for generating expressive and distinctive recipe
names by identifying what sets a given recipe apart from others in the same
category. We introduced the notion of a Recipe Difference Description (RDD), a
structured textual representation that captures relative differences in ingredients,
procedures, and utensils. By fine-tuning a language model on carefully curated
training data, we enabled the generation of recipe names that are not only fluent
and appealing but also reflective of the recipe’s unique characteristics.

Through both automatic and human evaluation, we demonstrated that ex-
plicitly modeling contrastive features leads to improved accuracy and expres-
siveness in generated names. In particular, user studies confirmed that recipe
names generated by the proposed method were more successful in capturing the
distinguishing features of each dish.

Although we focused on cooking recipes, the proposed approach, verbalizing
an item’s relative distinctiveness within a set, has potential applications in other
domains. Examples include naming products, summarizing research papers, or
highlighting unique characteristics in content recommendation systems. Future
work will explore these extensions and investigate how contrastive summariza-
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tion techniques can support more general forms of personalized or context-aware
generation.
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