
Learning to Rank-based Approach for Movie Search
by KeywordQuery and ExampleQuery

Kosuke Kurihara∗
Yahoo JAPAN Corporation

Tokyo, Japan
kurihara@sw.it.aoyama.ac.jp

Yoshiyuki Shoji
Aoyama Gakuin University

Kanagawa, Japan
shoji@it.aoyama.ac.jp

Sumio Fujita
Yahoo JAPAN Corporation

Tokyo, Japan
sufujita@yahoo-corp.jp

Martin J. Dürst
Aoyama Gakuin University

Kanagawa, Japan
duerst@it.aoyama.ac.jp

ABSTRACT
This paper proposes a method for ranking movies by keyword
queries and examples using machine learning techniques that ana-
lyze actual data from the online movie review site. Existing search
methods cannot rank movies in “surprising order” for the keyword
query “surprising.” People and critics created many “My best sur-
prising movies” rankings on the web. Our proposed method uses
a LambdaMART, one of the mainstream Learning to Rank tech-
niques, to learn these personalized rankings and sort the movies
through the viewpoint represented by a given query. To accept
more complex information needs, we diverted the learning results
to a search-by-example algorithm that enables users to input ex-
amples, such as “surprising movies like The Usual Suspects or Fight
Club.” The experiment using the personal ranking data from the
personal content curation service in Yahoo! Movies Japan suggests
two findings: direct learning of personal ranking does not improve
search performance, and the search-by-example-based application
increases user satisfaction.

KEYWORDS
Learning to Rank, Online Review, Movie Search

1 INTRODUCTION
Finding a movie to watch is a complicated technological challenge
in information retrieval. Imagine that a user is looking for a movie
through a certain keyword, such as “surprising movie.” Since a
movie is a visual image, it is impossible to search its content directly
by keywords. Additionally, metadata and synopses cannot be used
to rank movies correctly. The words related to “surprising" are not
included in the synopsis of a surprising movie.

Under these conditions, movie reviews are an essential source
of information for selecting a movie to watch. Currently, people
routinely read reviews on online review sites or video streaming
services. Users can read through movie reviews to discover the rep-
utation of a certain movie. It means that users can decide whether
the movie is surprising. However, they cannot search for movies
by entering keywords and find movies relevant to the keyword. In
other words, it cannot answer the request for a list of surprising
movies.
∗Kosuke Kurihara contributed to this research while at Aoyama Gakuin University
until March 2021.

There is no established method for integrating many review
information and connecting the reputation of each movie with the
query entered by the searcher to enable movie ranking. Manymovie
review sites provide simple movie rankings, such as the average
score ranking for each movie category. However, users’ search
intents are not limited to categories only but are more diverse. For
example, there is a need to rank movies from various viewpoints,
such as “road movies that make me want to go on a trip when I
saw them” or “movies suitable for watching with my girlfriend.”
Many articles based on individual viewpoints, such as “My top ten
sad movies” or “Ten best movies that will inspire you to travel,” are
published on thewebsite, attractingmany readers. It is also common
for individuals to create such rankings. Many online curation sites
allow users to create rankings, such as “My ten best surprising
movies” from the viewpoints that they are interested in.

Current movie information websites cannot automatically gener-
ate such rankings as “in order of tear-jerker” or “in order of surprise”
for any given query. Therefore, if a user wants to find “the tear-
jerker movie to watch next,” they have to read the reviews posted
for each movie one by one to determine whether they match their
information needs. Such activity is a time-consuming process and
involves the risk of seeing spoilers that they do not want to know
before they watch the movie.

Therefore, in this study, we propose a search model that can rank
movies based on a given viewpoint. For this purpose, our method
considers two improvements:

• Learning to Rank (LtR) technique is used to learn many
movie rankings created by individuals;

• Introducing the concept of the search-by-example approach
to the movie search

for traditional similarity-based methods.
We have previously developed an algorithm that makes dis-

tributed representation of words in movie reviews and enabled
collecting reviews containing words related to a given keyword
query. In this study, we aggregate such words and rank movies
using LtR techniques. We collect private movie rankings, such as
“My Best Ten *** Movies,” curated by individuals and posted on
actual movie information sites. Then, using a LambdaMART, one
of the most widely used LtR techniques, we trained the model on
the collected data. This model allows users to search for movies

iiWAS2021, November 29 – December 1, 2021, Online Kurihara et al.

by arbitrarily keyword query, such as “tear-jerker” or a movie that
“makes me hungry.”

Finally, we introduce the idea of search-by-example to movie
search to accept information needs with a finer granularity than
keyword queries. Keyword queries often fail to represent the search
intent sufficiently. For instance, movies, which match the keyword
query “nostalgic” should be divided into two types. One is the
movies whose topics are nostalgic (e.g., a drama set in the 1980s,
released in 2021), and the others are memorable to individuals (e.g.,
a drama set in the future, released in the 1980s when the searcher
was a child). To solve this problem, we created a search algorithm
that finds movies that can fill in the blank of the example ranking
given by a user. Users can input their information needs as an
example, such as “surprising movies like The Usual Suspects or Fight
Club.” It should make it easier to find the movie users want instead
of inputting “surprising.”

These two improvements should make users search for movies
based on any viewpoint. We conducted experiments on a large
dataset of actual services to verify the effectiveness of these meth-
ods. For the experiment, we used actual data from the “Roundup 1”
service of Yahoo! Movies, Japan. This service allows users to list up
to ten movies as they want and save or publish them. The data of
this service include many users’ original rankings, as the official
support recommends, “Let’s make your original movie ranking2.”
We conducted two experiments for each improvement: a large-scale
crowdsourcing-based labeling evaluation and a user experiment. In
the large-scale crowdsourcing experiment, users labeled the movies
in search result rankings for a pre-prepared query to check whether
they matched the query. In the subject experiment, participants
used our search system based on search-by-example. Then, they
were asked whether they were comfortable with this type of search
model in a questionnaire.

The remainder of the paper is organized as follows. This section
described the social and technical background and an overview
of this study. Section 2 introduces the related work. In Section 3,
we describe the details of the proposed algorithm. Sections 4 and
5 describe the evaluation experimental methods and results for
our ranking algorithm and search-by-example application, respec-
tively. Section 6 discusses the results. Finally, Section 7 presents the
conclusion.

2 RELATEDWORK
This study focuses on information retrieval using user reviews,
reputation information on the web, and LtR techniques. In this
section, we introduce and discuss the existing mainstream methods
of using reputation information on the web, such as distributed
representation-based item search and recommendation, LtR, and
search-by-example model.

2.1 Item Search Using Embedding Methods
Our method ranks the items (i.e., movie) by creating a distributed
representation using their review text. Using the embedding-based

1Yahoo! Japan: Yahoo! movie - My movie (in Japanese) https://movies.yahoo.co.jp/my/
matome/
2Yahoo! Japan: How to use Roundup function (in Japanese) https://support.yahoo-
net.jp/PccMovies/s/article/H000011620

approach, such as the distributed representation of entities, has
become one of the mainstream methods for search and recommend
items currently.

Barkan et al.,[1] proposed an item embedding method called
Item2Vec. Item2Vec applied the skip-gram model used in Word2Vec
to vectorize items on an e-commerce site. It uses the set of items
purchased simultaneously as contextual information to represent
an item. Additionally, it assumes that the feature of the purchased
item is represented by the items purchased before and after it (i.e.,
the skip-gram model). This distributed representation of items can
be used for information recommendations, such as collaborative
filtering. Yao et al.,[15] compared multiple-item embedding meth-
ods in an information recommendation task. They used a movie
dataset for comparison. In addition to Item2Vec, the comparison
methods include Doc2Vec for simple reviews. Many other methods
vectorized items using the 2Vec-based approach to enable the search
or recommend them. For instance, Product2Vec by Chen et al.,[3]
similarly analyzed purchasing behavior by creating a distributed
representation of items. Similar to our study, Zhang et al.,[17] pro-
posed Movie2Vec, which extends the idea of transformers used
in BERT to movies and their viewing data. Thus, the distributed
representation of movies can be used for a cold-start item recom-
mendation, such as item-based recommendation.

In this study, we also treat movies as vectors. Many previous
studies have ranked vectors of items by simple similarity calcu-
lations (i.e., cosine similarity or Euclidean distance). We use the
movie’s distributed representation as an input of LtR. For this pur-
pose, we used target topic aware Doc2Vec (TTA-D2V), developed
in our previous study, to vectorize movie reviews and aggregate
them for each movie.

2.2 Item Search Using Learning to Rank
LtR is a method for solving ranking problems through supervised
learning methods. The dataset of LtR consists of queries and docu-
ments with correct answer labels. The dataset 𝑆 is given by

𝑆 = {(𝑞, 𝑖, 𝑟) | (𝑞, 𝑖) ∈ 𝑃, 𝑟 = 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 (𝑞, 𝑖)}, (1)

where (𝑞, 𝑖) is a tuple of a query 𝑞 and the item 𝑖 , and 𝑃 is a set
of all tuples, 𝑟 is a label of relevance between the query 𝑞 and the
item 𝑖 . The model predicts the degree of relevance 𝑟 from a tuple
(𝑞, 𝑖). It is widely used as an optimization method, especially for
web search systems since it can infer the order of itemsets whose
order is unknown.

Karmaker et al., [5] investigated the usefulness of LtR for product
search in e-commerce sites by testing several hypotheses. LtR is
more accurate than logistic regression and SVM as a product search
method. This trend is true, especially when the model is trained to
predict the purchase and click rates of products.

Ludewig et al., [10] propose a hotel-ranking method using LtR.
They provided highly accurate hotel rankings by deriving users’
preferences and search intentions from short-term interactions
without using their long-term preference profile. Studies on item
retrieval based on deep learning have also been conducted [9].

Most existing studies in the information retrieval field using
LtR used click logs or purchase histories as the correct training
data [13, 14]. However, in this study, we use many rankings created
by users as training data. We believe that this can optimize the

https://movies.yahoo.co.jp/my/matome/
https://movies.yahoo.co.jp/my/matome/
https://support.yahoo-net.jp/PccMovies/s/article/H000011620
https://support.yahoo-net.jp/PccMovies/s/article/H000011620

Learning to Rank-based Approach for Movie Search
by KeywordQuery and ExampleQuery iiWAS2021, November 29 – December 1, 2021, Online

rankings without using difficult-to-collect data, such as click logs
or purchase histories.

2.3 Search-by-Example
Search-by-example is a method of input user information needs for
the search engine. It has been classically proposed as one of the
database query languages. Additionally, it can be used when it is
not easy to express the search intent as a keyword.

This idea is popular in the music retrieval field [7, 11, 12]. When
searching for music without lyrics, the user cannot search for it
with a keyword-based search system. As a classic example, Ghias
et al., proposed a method for retrieving music by humming (Query
by Humming).

As an example of using outside music, Kato et al., [6] proposed a
method for finding facilities in unknown areas by entering examples
in areas where the user is familiar with. Similarly, there are cases of
searching for short videos that include human actions as something
difficult to enter directly with keywords [16].

We believe that movie search is also a domain where it is not
easy to express search intents directly in keyword queries. When
looking for a movie that no user has seen yet, it is not easy to
describe its content in a keyword query. The proposed method
finds movies similar to the movie by giving several examples of
movies that contain similar viewpoints.

3 METHOD
We propose two movie search algorithms based on LtR: keyword
search and search-by-example methods. The two proposed meth-
ods use the review information to vectorize movies and employ a
machine learning method called LambdaMART to rank movies.

3.1 Method Overview
These two search methods share several similar parts. The frame-
work, vectorization of movies, and re-ranking search results by
LambdaMART [2] are common to both algorithms.

An overview of the shared part of the algorithm is as follows:

Algorithm 1 Create Movie Ranking
Require: 𝑞:Query
Ensure: 𝑅:Movie Ranking (list)

function generate_rank(𝑞)
𝑙𝑖𝑠𝑡 := Get_Matched_Movies(𝑞)
𝑅 := ReRank(𝑙𝑖𝑠𝑡)
return 𝑅

end function

This algorithm performs based on the re-ranking task in LtR.
First, the algorithm takes the set of items 𝑙𝑖𝑠𝑡 that is the top 𝑛 items
in the ranking sorted by the simple topic relevance. Next, it sorts
the set of items 𝑙𝑖𝑠𝑡 using a trained model and creates the final
ranking 𝑅.

To obtain a list of movies to be re-ranked, we vectorized each
movie and keyword query using TTA-D2V. In 2019, we proposed
the TTA-D2V method that can correctly vectorize short reviews
by learning Doc2Vec with a focus on other reviewers’ reviews that
mention the same movie (See previous work for details [8]). Then,

Training Phase Search Phase

 Create Dataset
by Vectorizing movie
reviews using TTA-D2V

 Create Training Data
from entire dataset by
making labels with users'
personal rankings

 Train LambdaMART
as the ranking model

T1

T2

T3

 Recieve Query
given as keyword

 Create Search
Candidates by using
TTA-D2V similarity

 Re-rank Candidates
with trained ranking
model

S1

S2

S3trained
model

Figure 1: Overview of keyword query search system using
user personal movie rankings and LambdaMART.

we used the top 1,000 movies and keyword queries as the target of
the re-ranking.

The framework that extracts such candidate search results and
re-ranks them is the same; however, the two methods’ timing and
training data are different. In keyword query search, personal rank-
ings posted by many users are used as the training data. It calculates
the model in advance since it uses massive training data. In the
search-by-example model, the method uses examples of movies
received from users as training data. Each time the user enters a list
of example movies as a query, the model will re-learn the ranking.

3.2 Keyword Search by Learning to Rank
The keyword search method receives keywords from the user and
returns a ranking. This method aggregates many people’s opinions:
the individual rankings written by many reviewers are integrated
and used to rank movies by the viewpoint given as a query.

The generated rankingwill sort movies suitable for the viewpoint
on the movie expressed by the input query, in the order of the depth
of the degree of that viewpoint. For example, in the case of a search
about “tear-jerker movie," the system sorts the movies in the order
that they make people cry more by integrating personal rankings,
such as “Ten of my saddest movies” created by reviewers. The
method enables searchers to easily search for movies using free
keywords, such as “movies that inspire me to travel” or “movies
suitable for dating.”

Figure 1 shows an overview of the keyword search method. The
method can be divided into two phases: the preparation and re-
trieval phases. The preparation phase is performed only once at first.
The search phase is performed after completing the preparation
phase and repeated for each search.

3.2.1 Training Phase. The preparation phase consists of three steps.
The goal of the preparation phase is to learn a single ranking model
by integrating many fragmented rankings.

iiWAS2021, November 29 – December 1, 2021, Online Kurihara et al.

Table 1: Feature vector of the entity in a private ranking

Feature # dimensions

Movie metadata 23
Movie Content 300

(Distributed Expression of the review)
Query 300

(Distributed Expression of the ranking title)
Relevance of Query and Movie 1

(Cosine simirarity)

Total 624

Label (inverted rank) 1

In the first step (T1 in Figure 1), the method creates a distributed
representation of each movie using reviews. For the vectorization
of movies, the method trains the TTA-D2V model in advance. TTA-
D2V is a modified algorithm of Doc2Vec that trains a model to
estimate which movie a single sentence in a review was written.
The trained model can create an arbitrary dimensional vector suited
for movie reviews from any sentence or word. Then, the method
considers all reviews written for a movie as a single document and
vectorizes it for each movie.

In the second step (T2 in Figure 1), the method creates training
data from the entire dataset. LamdaMART requires training data
as a set of three-tuple consisting of a query, relevance score, and
feature vector. Since our data is a personal ranking, we used the
ranking title as the query. We used language patterns to extract
the query part from their title since the ranking title is a concise
sentence. Specifically, we removed parts of the title, such as “My
best” or “Top ten,” and used nouns and adjectives preceding them
as the query. As a relevance score, we use the inverse of the rank
within the personal ranking.

The feature vectors of the entities in the ranking consist of four
types of features: the movie’s metadata, review text, query, and the
relationship between the query and the movie. Table 1 presents
the details of the features. As the metadata of a movie, we use 23
dimensions to represent the average rating of the movie on movie
review sites, the number of users who have registered the movie
to the watch list, and the category tag of the movie. As the review
contents, we use the distributed representation of the movie as
vectors of 300 dimensions each. As a query, we also used the 300-
dimensional distributed representation of the query. By treating the
query as a distributed representation, we can handle cases where
a query that is not included in the training data is input during
the search. As the relationship between the movie and the query,
their distributed representations’ cosine similarity is also used as a
one-dimensional feature.

The third step is to train the model (T3 in Figure 1). The model
is then created by training the prepared training data. Negative
examples are necessary for training. We select five movies that are
not similar to the query. We vectorize and use them as negative
examples. We trained the LamdaMART model with one dataset
consisting of positive examples (i.e., movies included in the ranking

submitted by users) and five negative examples. The preparation
phase is completed by learning all the rankings.

3.2.2 Search Phase. The search phase consists of three simple steps:
receiving a keyword query, collecting search suggestions, and re-
ranking.

First, the system receives the user’s keyword query consisting of
a few words. Since the keyword query is used for similarity calcula-
tion using a distributed representation, it needs to be preprocessed.
As a preprocessing, the system removes natural language parts in
the query by language patterns (e.g., “movie that,” “a film of”). Then,
the system performs morphological analysis to extract only words,
such as nouns, verbs, and adjectives. It also removes stop words
and words that do not appear in the dataset. The preprocessing
was necessary to unify the vocabulary used in reviews and the
query since it uses the Doc2Vec model trained on the movie review
dataset.

Next, the method uses the TTA-D2V model learned in the train-
ing phase to represent the query as a distributed representation. It
calculates the similarity between the distributed representation of
the query and all movies in our dataset to extract the candidates.
Their cosine similarities are calculated, and the top 300 movies are
targeted for re-ranking.

Finally, the ranking model learned in the preparation phase is
used to sort the candidates. The method finally returns these re-
ranked candidates as the search result. The search results ranking
should be an aggregation of many users’ rankings based on the
viewpoint given by the query.

3.3 Search-by-Example
The search-by-example method accepts as a query an example
consisting of several movies created by the user. This method allows
for more detailed input of search intent. In other words, instead of
saying “science fiction movies,” the system must be able to guess
the user’s intent more clearly if users can input search requests as
“science fiction movies like Blade Runner or 2001: A Space Odyssey.”
The input and output of this method is a movie ranking. Themethod
learns the input movie ranking, inserts new movies at the end or
in the ranking gaps.

Figure 2 shows the overview of the search-by-example method.
Similar to the keyword search method described above, the search-
by-example method also consists of two phases: preparing and
search phases. The most significant difference from the keyword
search method is that it does not perform large-scale learning in the
preparation phase but performs small-scale learning in the search
phase each time. It means that the functions related to training
have been moved from the training phase to the search phase, but
the content of each step has not changed. The keyword search
algorithm learned the model from the large-scale rankings made
by many people, registered on the Roundup service. However, the
search-by-example algorithm learns search models by on-the-fly
learning using a single ranking entered by the user on-site.

The method executes the preparation only once to enable movie
vectorization by learning the movie reviews. This phase consists of
only one step. The method vectorizes all movies in advance using
reviews to determine the characteristics of movies in the given
example ranking. We used TTA-D2V to vectorize the movies from

Learning to Rank-based Approach for Movie Search
by KeywordQuery and ExampleQuery iiWAS2021, November 29 – December 1, 2021, Online

Preparation Phase Search Phase

 Create Dataset Receive Query

Create training data

by Vectorizing movie given as a ranking

from given ranking

reviews using TTA-D2V

P1 S1

S2

Train LambdaMART
with the training data
S3

Create Search
Candidates by using
 TTA-D2V similarity

S4

S5 Re-rank Candidates
with trained ranking
model

On-the-fly Learning
in Search Phase

Figure 2: Overview of search-by-example-based movie
search model

Table 2: Features of a movie in search-by-example model

Feature # dimensions

Movie metadata 23
Movie Content 300

Total 323

the reviews similar to keyword search. The details are the same as
those described in section 3.2.1.

Next, the method executes the search phase, and the search phase
is required every time for every search.

The method accepts an example movie ranking given as a query.
The ranking should be based on some uniform viewpoint, such as
“Top ten movies I feel nostalgic about” or “Movies that made me
hungry while watching.” An example ranking should consist of
about ten movies.

Then, the method generates the training data for LtR on the
fly. Unlike the keyword search method, only the example movie
ranking given by the searcher is used as training data. In this way,
the ranking model obtained because of training depends on the
ranking given by the individual searcher.

For the actual training, the method represents the movies in the
ranking as features. The features used are shown in Table 2. The
metadata and distributed representation of the movies are the same
as in the keyword search method. Unlike in keyword search, we do
not use query features.

We used the generated training data for training to create the
LambdaMART-ranking model. Since negative examples are neces-
sary for the training of the lambdaMART model, the method selects

movies that are not similar to the input movies. The method vector-
ized the movies in the input ranking and calculates their arithmetic
mean to obtain a set of roughly dissimilar movies. Then, we selected
five movies with the lowest cosine similarity to the arithmetic mean
vector from all movies vectorized in the preparation phase and used
as negative examples.

The system determines the candidate movies to create the search
result. Like the keyword search model, this model creates the final
search result by re-ranking candidates. Therefore, the method se-
lects a set of roughly similar movies to the input movies and sorts
them into an order consistent with the input ranking. The method
vectorized each movie in the example ranking given as a query.
Then, the method selects the movie with the top 𝑛 highest cosine
similarity to each movie in the example ranking. The number of
candidates 𝑛 should be defined by considering the computational
cost, the number of movies given as an example ranking, and the
number of search results. In our experiment, we used 30 movies
close to each movie in ten input movie sets for re-ranking, creating
a ranking of 30 movies. It is worth noting that, in many cases, a set
of movies with consistent concepts may be placed close together in
the vector space. When the input is a ranking consisting of movies
sharing a certain perspective, the candidate movies that are similar
to them often overlap. Here, the number of similar movies to be in-
cluded in the candidate list will be dynamically adjusted according
to the number of search results required.

Finally, the actual re-ranking is conducted to create the search
results. The ranking model learned from the input example ranking
re-ranks the candidates. The movies ranked in the ranking are
presented as a search result.

4 CROWDSOURCING-BASED EXPERIMENT
FOR KEYWORD SEARCH

To quantitatively verify the ranking accuracy of the keyword search
method, we conducted a large-scale evaluation experiment through
crowdsourcing using real data.

To verify the usefulness of LtR using data from Roundup sites,
we compared a model with simple relevance and a model that re-
ranks with LtR. We have prepared two ranking algorithms. LtR is
a proposed method described in Section 3.2. It re-ranks the top 300
candidates collected by their relevance using lambdaMART. TTA-
D2V is a comparative method without re-ranking the candidate. It
simply ranks movies by cosine similarity of their TTA-D2V feature
vector.

We searched for movies using ten pre-prepared queries and cre-
ated rankings for each method. Each movie included in the ranking
was randomly sorted, and a questionnaire was administered. Par-
ticipants judged how well a movie matched the query, e.g., “On a
scale of one to four, how much does Titanic make you cry?”

The questionnaire was administered through crowdsourcing.
As a crowdsourcing platform, we used Yahoo! Crowdsourcing, a
popular platform in Japan. A total of 1,024 workers engaged in 3200
evaluation tasks.

4.1 Implementation
To verify the performance of the proposedmethod, we implemented
a web system that collects data from the Roundup service of an

iiWAS2021, November 29 – December 1, 2021, Online Kurihara et al.

actual site and trains the ranking model from it. In this section,
we describe the details of the actual dataset and the system imple-
mented.

We used data collected from Yahoo! Movies in Japan as a movie
dataset. Yahoo! Movie is a portal site for movie information. There-
fore, it is possible to collect metadata for movies and reviews for
them together. Additionally, this site allows users to create their
rankings in the Roundup service. Users can create as many movie
rankings as they want with any title, consisting of up to ten movies.

From the Roundup data, we extract the actual rankings for learn-
ing. The data are not clean and need cleansing since they are pre-
pared by many users. Many rankings created by individuals do
not have a specific viewpoint. For example, rankings, such as “my
top ten favorite movies” or “top ten movies of 2020” do not have
a viewpoint. Additionally, many personal rankings are not in the
ranking format, i.e., users use the Roundup function as a watch list.
We removed rankings that do not include words, such as “Top” or
“Best.” We used language patterns to extract the viewpoint. For ex-
ample, we created grammatical rules, such as before “–like movie”
or after “movies makes me-” to extract essential parts from the
ranking titles. Finally, we extracted 5,375 rankings as the training
data.

We implemented the method described in section 3.2 and created
a LambdaMART model that learns how a specific movie is ranked
for a specific query from a feature vector of 624 dimensions. The
correct labels for the features are assigned as 10, 9, 8, · · · , 1 in the
order of their rank in individual personal movie rankings. Even if
the number of movies in the ranking is less than 10, the labels are
assigned in descending order starting from 10. Negative examples
are assigned 0 as a label.

We used the LtR method to train the movie ranking data. We
used LambdaMART [2]; as the implementation of LambdaMART,
we used XGBoost Python library [4]. The parameters for learning
are as follows: The objective is nDCG, eta is 0.05, gamma is 0.25,
max tree depth is 12, minimal child weight is 0.5, feature-sampling
rate by a tree is 0.5, alpha is 0.5, and lambda is 0.0.

4.2 Crowdsourcing Labeling
We describe the questionnaire items and crowdsourcing setting.
The questions in the questionnaire ask how appropriate it is for
the pair of queries and movies on a four-point scale. Examples and
evaluation criteria were displayed at the top of the questionnaire
page. The response criterion was 0 points if the query did not fit the
movie, 1 point if it fits a little, 2 points if it fits approximately, and
3 points if the query seemed to fit overall and perfectly. Workers
were allowed to search the web for a movie. Workers can enter how
confident they are in their answers.

We prepared 3,200 questions, consisting of movies for the ten
queries. For each query, 320 movies were obtained using TTA-D2V
and the comparison method. Since the proposed method re-ranks
the search results of TTA-D2V, we use the top 300 results of TTA-
D2V for evaluation. Additionally, to measure how difficult the query
is to retrieve, we evaluated 20 randomly selected movies.

The questionnaires for five movies for one query were combined
into one crowdsourcing task. Workers answered six questionnaires,
including a dummy question (a simple math problem) to prevent

Table 3: nDCG and precision in ranking sections of ranking
methods (average of ten queries)

LtR TTA-D2V

rank part
precision

1st – 30th 0.718 0.780
31st – 100th 0.679 0.737
101st – 300th 0.667 0.637
301st – 500th - 0.654

nDCG
@30 0.177 0.195
@100 0.386 0.425
@300 0.844 0.860

Table 4: nDCG@𝑘 for each query

Query nDCG@30 nDCG@100 nDCG@300

LtR TTA-
D2V LtR TTA-

D2V LtR TTA-
D2V

Nostalgic 0.212 0.177 0.441 0.398 0.870 0.844
breathtaking Action 0.189 0.190 0.409 0.431 0.862 0.870
Makes me go on a trip 0.181 0.220 0.390 0.456 0.825 0.867
Makes me inspiring 0.174 0.175 0.386 0.391 0.878 0.883
Makes me hungry 0.099 0.230 0.274 0.455 0.653 0.744
Makes me want to guess 0.168 0.230 0.354 0.470 0.841 0.881
Nice music 0.227 0.167 0.453 0.377 0.900 0.852
Suitable for dating 0.190 0.191 0.411 0.415 0.880 0.880
Feel family love 0.172 0.183 0.381 0.416 0.868 0.882
Spine-chilling 0.155 0.191 0.362 0.437 0.866 0.894
Average 0.177 0.195 0.386 0.425 0.844 0.860

BOT. Each worker was allowed to answer up to 5 tasks.We collected
answers from six workers for one task. Finally, we received 19,200
(3,200 tasks for six workers) answers from 1,024 workers.

4.3 Result
Based on the responses obtained, we labeled each movie as to how
appropriate it was for each query. Table 3 presents the average
precision and nDCG of ten queries for each method. The precision
is the percentage of movies that the crowd worker judges to be
congruent to the query in that ranking section. In this experiment,
the subjects were instructed to select 0 (different) for irrelevant
movies. Therefore, the movies whose average score was one or
more are considered relevant in this evaluation.

5 USER EXPERIMENT FOR
SEARCH-BY-EXAMPLE

To qualitatively verify the usefulness of the example search method
based on the specific information requests of searchers and user
experiences, we conducted a subject experiment.

5.1 Implementation
In this experiment, we constructed an experimental website where
users can search for movies by inputting their information requests
in the form ofmovie rankings. Figure 3 shows the actual screenshots
of our evaluation system. The left side of Figure 3 is a screen that
allows users to input their information needs as an example ranking.
Users can input up to ten movies. When the user enters the movie
title partway in the text box, the movie title is suggested. Selecting

Learning to Rank-based Approach for Movie Search
by KeywordQuery and ExampleQuery iiWAS2021, November 29 – December 1, 2021, Online

Collateral Beauty

Beauty and the Beast

Nausicaa

The Princess Mononoke

Castle in the Sky

Back to the Future Part III

The Borrower Arrietty

ONE PIECE THE MOVIE

The Bucket List

Titanic

Input Your Ranking!

Input

Back to the Future Part III

Nausicaa

Castle in the Sky

Collateral Beauty

Master and Commander

Porco Rosso

Doraemon

The Big Country

Alien 2

Maleficent: Mistress of Evil

Back to the Future Part II

Frequency

Search Result

Figure 3: Screen shot of the evaluation system for search-by-
example movie retrieval (Translated from Japanese)

a title will place that movie in the ranking. The user can freely
reorder the ranking by drag and drop.

Pressing the search button will take the user to the results screen
(right side of Figure 3). On this screen, the top 30 results of the
movie search are displayed. The results will contain a mixture of
user input movies and new movies. The user input movies are
shaded in gray. To the right of each movie title, there is a voting
button. Users can give the movie thumbs up or thumbs down if the
movie is fit their search intent.

5.2 Experimental Settings
We explained to the participants the purpose of the experiment and
how to use the experimental website. After that, participants can
freely search for movies on the site for about one hour.

Participants could input their search intent as an example rank-
ing. If the participant did not know a movie appeared in the search
results, the participant search for the movie information on the
web. At the end of the experiment, the participants were asked to
answer a questionnaire.

The questionnaire asked for a ranking evaluation of whether
each movie within the results was the movie they wanted and how
they felt about using the system. Participants were asked to give
their opinions and impressions about the accuracy and unexpect-
edness of the search results, the significance of expressing their
requests in a ranking format, and the difference in user experience
between ordinary web search and the illustrative search method.

There were five participants in this experiment. They were all
male, and their age was the 20s and 30s.

5.3 Result
First, the results of the accuracy and unexpectedness of the search
method are presented. We asked the participants to indicate how
they felt about the accuracy of the example search method on a
four-point scale, and the results are shown in Table 5.

Table 5: Answer for “How do you feel about the accuracy of
the example search method?”

Choice # participants
Very suitable 2
Suitable 1
Bad 1
Very bad 1

Two participants answered “very suitable,” one “suitable,” one
“bad,” and one “very bad.” One participant, who answered “very
suitable,” gave the following reason: “The results were relevant
not only to the genre of the movie I chose but also to the content,
director, and actors.” Another participant who answered “bad” gave
the reason for his answer as follows: “There were not many titles
that I wanted.”

Next, we show the results for unexpectedness (i.e., serendipity).
Table 6 presents the results of a three-point test where participants
were asked to indicate the number of movies, they could not dis-
cover on their own or were interested in only after being presented
with the search results.

Table 6: Answer for “among the results, were there any
movies that you could not discover on your own, or that you
became interested in only after theywere presented to you?”

Choice # participants
Many 2
A few 3
None at all 0

Two participants answered “Many,” three answered “A few,” and
no participant answered, “None at all.” For the specific example of
such search results, one participant responded as follows: “I input
a movie, which is a sports story of long-distance relay road race,
and ’Naoko’ (a Japanese marathon movie’s title) appeared in the
search result. It was a movie that I had wanted to watch but had
forgotten about it.”

These answers suggest that although the accuracy of the search-
by-example is not high, the input in the form of ranking can indicate
the search intention. Additionally, if the search results contain only
a few correct answers, users can discover new movies.

Next, we asked for opinions in the form of input in the movie
search with the search-by-example model. We investigated whether
the search intentions are conveyed and the time and effort required
for input. We asked the participants about the ease of expressing
information needs. For the options “keyword search is sufficient”
and “example search is useful,” all five answered that it was use-
ful. There was a comment that “some search intent can only be
expressed by giving examples.” Then, the participants were asked

iiWAS2021, November 29 – December 1, 2021, Online Kurihara et al.

to give multiple answers to what they thought about the effort
and difficulty of making queries for the search-by-example movie
search. Table 7 presents the choices that one or more participants
selected.

Table 7: Answer for “Whatwas the difficult part of searching
for a movie in this system?”

Choice # participants
No problem 1
It takes a lot of time to input 2
I could not imagine movies to input 3

The most common comment from the participants was that they
could not find enough movies to exemplify their search intent.

Finally, we also administered a questionnaire about the user
experience of such a search system. First, we asked the participants
to choose whether our search-by-example system was easier to
search for unknown movies than the standard keyword search
method.

Table 8: Answer for “Do you think search-by-example can
find new movies more easily than a traditional keyword
search?”

Choice # participants
Strongly agree 2
Agree a little 2
Disagree a little 1
Strongly disagree 0

Most participants highly evaluated this kind of search model.
One participant commented, “I felt that the ranking format allowed
me to make a more personalized selection than a standard keyword
search.” Participants who answered “Disagree a little” to this ques-
tion said, “I could not imagine movies to input, so my intention
was not well communicated. Many well-known films were found.”

6 DISCUSSION
Based on the results from two experiments, we discuss the keyword
search and search-by-example system using LambdaMART. In the
evaluation experiments of the keyword search method, the pro-
posed method achieved lower accuracy than the existing method,
Doc2Vec. Even in the top 30, the most important part of the ranking,
nDCG was low at 0.177. Therefore, it is not easy to say that the
results are ordered by the degree of match with the query. The pro-
posed method was not strong enough to generate movie rankings
by aggregating many people’s opinions. There are two problems.

The first problem is the limitation of using LamdaMART. Lam-
daMART is a feature-selective machine learning algorithm based on
decision trees. Therefore, it may not have understood the meaning
of vectors represented by Doc2Vec in multiple dimensions correctly.
To succeed in such a search task, we need to deal with informa-
tion that appears across multiple dimensions. For example, vectors
contain query and movie features; however, LambdaMART may
not be able to consider the relationship between them. In future

studies, we investigate the use of ranking learning methods based
on feature generation, such as deep learning.

The second issue is the quality of the training data. In this ex-
periment, we employed rankings created by individuals using the
“Roundup” function. After the experiment, we rechecked our dataset
and discovered some lists that were not ranked. Some personal rank-
ings included the word “ranking” in their title, but their content only
listed the series of films in the order of their release date. Addition-
ally, they contained many contradictory ones since their rankings
were personal. The rankings with similar titles created by different
users differed in the movies they appeared in, and their rankings.
Therefore, when many such personal rankings were collected and
trained, the ranking model could not discover the universal features
of each query well in the training data.

Next, we discuss the evaluation results of the search-by-example.
From the questionnaire results, all participants could discover new
movies, although there was some disagreement about the accuracy.
Additionally, most participants were satisfied with the system. Even
though the accuracy was low, the participants described the search
results as having a “tailor-made” feel. However, many participants
felt that creating rankings was laborious and complex in the search-
by-example. One participant commented, “Since it takes about two
hours to watch a movie, I can tolerate the time and effort required
to create a query if I can avoid mistakes.” However, this system is
difficult to use for searchers who have not watched enough movies
to create an example ranking. For example, not many users can
immediately list ten movies when asked about their favorite Sci-
Fi movies. Such difficulty of input is a major disadvantage of the
search-by-example-based movie search.

Let us consider the reason why the satisfaction level was high
despite the low accuracy. Some participants said that the results did
not need to be in the form of a ranking and that they would like to
see a list of more movies. Another said that it would be enough if
the 30 results included only one or two movies that they wanted to
see. These opinions may be because the searchers do not expect the
system to have perfect order of relevancy but rather to make new
discoveries. Therefore, our approach, using the LtR-based method
to accept example ranking as a query, could enable a more accurate
query representation of information needs.

7 CONCLUSION
This study used the LtR technique to aggregate many people’s opin-
ions and enable more accurate query input. We created a keyword
search system using actual Roundup data from Yahoo! Movies and
a search system based on search-by-example.

In the keyword search method, the search result candidates
were sorted by the model learned from the personal rankings of
many people. The evaluation experimental results showed that the
proposed search method achieves lower nDCG than the simple
Doc2Vec-based method, and its usefulness could not be confirmed.

In the search-by-example method, the user enters an example
ranking as a search query. The system uses the ranking to train
a ranking model on the fly. The results of the user experiments
showed that this search method was generally well-received. The
method was able to find newmovies that fit the searcher’s intention.

Learning to Rank-based Approach for Movie Search
by KeywordQuery and ExampleQuery iiWAS2021, November 29 – December 1, 2021, Online

In future studies, we will improve the accuracy of the keyword
search and the usability of the search-by-example model. We will
use deep learning instead of LambdaMART or cleanse the training
data. In the search-by-example method, we discovered that it was
burdensome for users to think of ten search queries. Improvements,
such as integrating the system with a keyword search or enabling
search by choice are necessary.

ACKNOWLEDGMENTS
Thisworkwas supported by JSPS KAKENHIGrants Number 18K18161,
21H03775, and 18H03243.

REFERENCES
[1] O. Barkan and N. Koenigstein. 2016. Item2vec: neural item embedding for collab-

orative filtering. In MLSP 2016. IEEE, 1–6.
[2] C. J. C. Burges. 2010. From RankNet to LambdaRank to LambdaMART: An

Overview. Microsoft Research Technical Report MSR-TR-2010-82.
[3] Fanglin Chen, Xiao Liu, Davide Proserpio, and Isamar Troncoso. 2020. Prod-

uct2Vec: Understanding Product-Level Competition Using Representation Learn-
ing. NYU Stern School of Business (2020).

[4] T. Chen and C. Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In
Proc. of SIGKDD 2016 (San Francisco, California, USA) (KDD ’16). ACM, New
York, NY, USA, 785–794. https://doi.org/10.1145/2939672.2939785

[5] S. K. Karmaker Santu, P. Sondhi, and C. Zhai. 2017. On application of learning to
rank for e-commerce search. In Proc. of SIGIR 2017. 475–484.

[6] Makoto P. Kato, Hiroaki Ohshima, Satoshi Oyama, and Katsumi Tanaka. 2009.
Query by Analogical Example: Relational Search Using Web Search Engine In-
dices. In Proceedings of the 18th ACM Conference on Information and Knowledge
Management (Hong Kong, China) (CIKM ’09). Association for Computing Ma-
chinery, New York, NY, USA, 27–36. https://doi.org/10.1145/1645953.1645960

[7] N. Kosugi, Y. Nishihara, T. Sakata, M. Yamamuro, and K. Kushima. 2000. A prac-
tical query-by-humming system for a large music database. In Proc. of ACMMM
2000. 333–342.

[8] K. Kurihara, Y. Shoji, S. Fujita, and M. J. Dürst. 2019. Target-Topic Aware Doc2Vec
for Short Sentence Retrieval from User Generated Content. In Proc. of iiWAS 2019.
463–467.

[9] Ho-Chang Lee, Hae-Chang Rim, and Do-Gil Lee. 2019. Learning to rank prod-
ucts based on online product reviews using a hierarchical deep neural network.
Electronic Commerce Research and Applications 36 (2019), 100874.

[10] M. Ludewig and D. Jannach. 2019. Learning to rank hotels for search and rec-
ommendation from session-based interaction logs and meta data. In Proc. of the
RecSys Challenge 2019. 1–5.

[11] M. Rocamora, P. Cancela, and A. Pardo. 2014. Query by humming: Automatically
building the database frommusic recordings. Pattern Recognition Letters 36 (2014),
272–280.

[12] J. Salamon, J. Serra, and E. Gómez. 2013. Tonal representations for music retrieval:
from version identification to query-by-humming. IJMIR 2, 1 (2013), 45–58.

[13] L. Wu, D. Hu, L. Hong, and H. Liu. 2018. Turning clicks into purchases: Revenue
optimization for product search in e-commerce. In Proc. of SIGIR 2018. 365–374.

[14] J. Xu, C. Chen, G. Xu, H. Li, and E. R. T. Abib. 2010. Improving quality of
training data for learning to rank using click-through data. In Proc. of WSDM
2010. 171–180.

[15] Yuan Yao and F. Maxwell Harper. 2018. Judging Similarity: A User-Centric Study
of Related Item Recommendations. In Proceedings of the 12th ACM Conference
on Recommender Systems (Vancouver, British Columbia, Canada) (RecSys ’18).
Association for Computing Machinery, New York, NY, USA, 288–296. https:
//doi.org/10.1145/3240323.3240351

[16] Gang Yu, Junsong Yuan, and Zicheng Liu. 2013. Action Search by Example Using
Randomized Visual Vocabularies. IEEE Transactions on Image Processing 22, 1
(2013), 377–390. https://doi.org/10.1109/TIP.2012.2216273

[17] Xinran Zhang, Xin Yuan, Yunwei Li, and Yanru Zhang. 2019. Cold-Start Represen-
tation Learning: A Recommendation Approach with Bert4Movie and Movie2Vec.
In Proceedings of the 27th ACM International Conference on Multimedia. 2612–
2616.

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/1645953.1645960
https://doi.org/10.1145/3240323.3240351
https://doi.org/10.1145/3240323.3240351
https://doi.org/10.1109/TIP.2012.2216273

	Abstract
	1 Introduction
	2 Related Work
	2.1 Item Search Using Embedding Methods
	2.2 Item Search Using Learning to Rank
	2.3 Search-by-Example

	3 Method
	3.1 Method Overview
	3.2 Keyword Search by Learning to Rank
	3.3 Search-by-Example

	4 Crowdsourcing-based experiment for keyword search
	4.1 Implementation
	4.2 Crowdsourcing Labeling
	4.3 Result

	5 User Experiment for Search-by-Example
	5.1 Implementation
	5.2 Experimental Settings
	5.3 Result

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

