
BERT-Based Movie Keyword Search Leveraging
User-Generated Movie Rankings and Reviews

Tensho Miyashita
Graduate School of Science and Engineering

Aoyama Gakuin University
Kanagawa, Japan

tensho@sw.it.aoyama.ac.jp

Yoshiyuki Shoji
Faculty of Informatics

Shizuoka University
Shizuoka, Japan

shojiy@inf.shizuoka.ac.jp

Sumio Fujita
LY Corporation
Tokyo, Japan

sufujita@lycorp.co.jp

Martin J. Dürst
College of Science and Engineering

Aoyama Gakuin University)
Kanagawa, Japan

duerst@it.aoyama.ac.jp

Abstract—This paper introduces a novel method for movie
keyword searches based on user-generated rankings and reviews.
We utilize the capabilities of the BERT language model, which
has been enriched with task-specific fine-tuning. The model is
trained to understand the relationship between keywords and
movies using paired user-generated ranking titles and movie
reviews. We sourced our data from a renowned Japanese movie
review platform. This dataset comprises 10,000 user rankings and
15,000 films. In a binary classification task, our model demon-
strated superior performance compared to traditional similarity-
based methods. While our approach outperforms traditional
similarity methods, further improvements in pooling techniques
are necessary.

Index Terms—LLM, Movie Search, User Generated Contents,
Review, Ranking

I. INTRODUCTION

In recent years, how people select movies has changed due
to the widespread use of on-demand and subscription-based
movie distribution services. Conventionally, a person goes to a
movie theater and selects a movie to watch on the spot. In this
way, since only a few movies are played in theaters, they only
have to choose one movie to watch from several candidates.
Even when using video rental stores, the number of videos is
limited; therefore, users can decide on a movie to watch before
coming to the store or search for a movie to watch in store.
However, when using movie distribution sites, users need to
select a movie from almost all movies ever released. In this
case, it is difficult to examine each movie individually to see
if it suits their demands.

Attitudes toward watching movies are also changing. Re-
cently, more and more people have been casually watching
movies on their computers and smartphones. Watching movies
while working and increasing playback speed is becoming
more common; watching movies is becoming more integrated
into everyday life. This change in movie-watching style has
increased the demand for technology that enables users to
search for movies more easily.

For example, there is a need to search for movies using the
ranking of arbitrary keywords, such as “I want to see movies
with beautiful scenery that I can play while working” or “I just
want to see movies with flashy action.” However, conventional
movie searches cannot find movies using keywords such as
“beautiful scenery” and “flashy action” because movie infor-
mation sites target descriptions and metadata. Metadata on
movie information websites generally only include information
such as the original title, country of production, director,
music, actors, etc., as well as descriptions and synopses.
However, the description or synopsis of a movie is merely
a text that describes what the movie is about from a third
party’s point of view. It does not include information about
the impressions the movie made on people who watched it.

In this situation, reviews are an important source of infor-
mation for judging how viewers feel about a movie, such as
whether the movie has “beautiful scenery.” However, when
trying to find movies with “beautiful scenery” from the vast
number of movies available on video distribution sites, it is
not realistic to read the reviews posted for each movie one by
one to determine whether it is a movie that the user wants to
see.

In this paper, we propose a method for ranking movies
based on free queries by learning the relevance of movies
and queries from user-generated rankings and movie reviews
using bidirectional encoder representations from transformers
(BERT). For this purpose, we focused on services that allow
users to submit their own movie rankings. Some movie review
sites have a function in which individuals can create a list of
their favorite movies. For example, Yahoo! Movies, one of the
biggest movie information sites in Japan, uses Round-Up to
provide this function, where users can register up to 10 movies
using any point of view they like. Each user-generated ranking
in Yahoo! Movies’ Round-Up is given a title, for example,
“Top 10 movies that make me cry,” and then 10 movies are
listed.

We hypothesized that these ranking titles might function like
search keywords. Therefore, we attempted to make movies
searchable using keywords by learning the relationship be-
tween ranking titles and the movies listed in the ranking. In
recent years, inference using large-scale language models has
become more common, as is typified by BERT. If such a
language model can infer that “movies with this type of review
tend to appear in rankings with this kind of title,” then movies
can be searched for using arbitrary keywords. In other words,
movies can be scored by the probability of their appearance
in user-generated rankings whose titles contain the keyword
query.

To achieve such a search method, we proposed an algorithm
comprising three steps (see Figure 1):

• Vectorize ranking titles and all reviews using BERT,
• train the neural network model to calculate the relevance

between the ranking title and reviews of a certain movie,
and

• generate rankings from a user-entered query.
The first step was the vectorization of keywords and re-

views. We used BERT, one of the most popular large language
models, to vectorize sentences consisting of natural language,
such as queries and reviews. The feature vector archived by
BERT is a numerical representation of the meaning of a
sentence or word.

The second step involved learning the relevance of the
queries and reviews using machine learning. We used a simple
neural network model and trained it with movie vectors and
ranked title vectors. The user-generated rankings were used
for this learning as the training data. For example, suppose
a certain movie appeared in a ranking named “My top 10
tearjerker movies.” The model would then learn the movie
review and the ranking title as a pair. Such learning enables the
model to solve binary classification tasks for pairs of keywords
and reviews. For example, whether a movie with a particular
review appears in a user-generated ranking that includes the
keyword in the title.

The third step was to generate actual rankings from user-
entered queries. Here, the keyword query was vectorized using
BERT. The algorithm combined the vector of queries with the
vector of movies and then classified them using the trained
model. That is, whether the movie is likely to appear in
the ranking with the query in its title. The algorithm can
rank movies according to their classification probability by
performing a brute-force classification of all candidate movies.
Here, we expected the performance of BERT’s zero-shot
inference to be high enough to rank movies even by keywords
that were not included in the ranking title.

In this way, generating a movie ranking based on arbitrary
keywords was possible. We conducted a subject experiment
to confirm the accuracy and effectiveness of this ranking.
Participants were asked to evaluate how closely the movies
in the rankings generated by the proposed method and several
comparison methods were related to the query.

This paper is an extended version of the short paper previ-
ously published [1].

II. RELATED WORK

This research aimed to make movies searchable using word
of mouth (eWOM). BERT and Learning to Rank were used
as enabling technologies.

A. Item Search Using eWOM

Our research used reviews posted on movie sites, a type of
eWOM, to find movies that were close to what users were
looking for. There are several examples of this kind of item
search that focus on eWOM.

Ramanand et al. [2] proposed a method for extracting
“wishes” that indicated suggestions about products and ser-
vices and purchase intentions from documents, such as reviews
and buyer surveys. The “wishes” extracted from the reviews
were applied not only to improve the quality of products and
services but also the recommendations and presentations of
products sought by customers. Similarly, this study used user
review information to search for movies using free queries.

B. Information Retrieval Using BERT

BERT is a natural language processing model proposed by
Devlin et al. [3] that enables context reading. BERT has been
applied in various fields because it can convert the meaning of
words in a sentence into a distributed representation of vectors
with high accuracy.

Depending on the application, BERT has been used for var-
ious task-specific purposes by fine-tuning pretrained language
models. As an example of fine-tuning focusing on sentence
similarity, Nils et al. [4] proposed Sentence Bert, a BERT-
based model specialized for sentence similarity searches. Ex-
periments evaluating the performance of sentence embedding
using SentEval have shown that this method can vectorize the
meanings of sentences more effectively.

As another example of a specific domain, Zhuang et al. [5]
proposed a fine-tuning BERT model that focuses on words
related to finance, FinBERT. Using performance evaluation
experiments using FiQA, a dataset consisting of question-
and-answer documents in the field of finance showed that
FinBERT effectively reflects the meanings of finance-related
words in vectors. Shibata et al. [6] proposed a method
for retrieving query-relevant FAQs using BERT. Experiments
using the localgovFAQ and StackExchange datasets showed
that this method enabled more accurate FAQ retrieval. This
study used simple BERT without fine-tuning in the specific
domain of movie reviews.

There are also examples of BERT applied to information
retrieval. Yang et al. [7] proposed a method for adapting
BERT to the ad hoc retrieval of documents. Experiments with
TREC Microblog Tracks showed that BERT-based methods
are effective for retrieving short documents, such as those
found in microblogs. Yunqiu et al. [8] proposed a BERT
model for legal case retrieval, BERT-PLI, that can retrieve
from much longer queries than general queries. A related
precedent retrieval task using the COLIEE 2019 dataset re-
vealed that this method can more accurately understand the
meaning of longer documents. Zhuolin et al. [9] proposed a

Toy Storyfunny

funny

saddest

Tearjerker

Keyword Query

Ranking of All Movies

Keyword
Vectorization

Movie Vectorization
by Review

Relevance Calculation Training of Relevance Model

Titanic

I needed a handkerchief.

Terminator 2

The last scene made me crying

Dancer in the Dark

Toooo sad !!!

Input

1. Titanic
2. Hachi

1. Home Alone
2. Toy Story

Output

Vector of
Keyword

Query Vector of
Movies

(Created from Reviews)

“Tearjerker”

“Tearjerker” “Titanic”

“Tearjerker” “Titanic”

“Tearjerker” “Hachi”

“Tearjerker”“Home Alone”

“Titanic”

“Terminator 2”

“Dancer in the Dark”

"My top 10 saddest movies"

"Best Funny Movies Ever"

Trained
Nural

Network Nural
Network

BER
T

BERT

Vectorizing
with BERT

Vectorizing
with BERT

Convert
Trained
Model

･･･

･･･ ･･･
Review Site

User Generated Rankings
This combination

 is often seen
within User

Generated Ranking.

saddest Hachi

Home Alone

Titanic

Is "Titanic" likely to appear in a
User Generated Ranking with
the title containing “Tearjerker"?

Vectorizing
with BERT

Training

Vectorizing
with BERTConcatenate

Used for
Ranking

Inference

Probability

0.9

0.9

0.8

0.7

Fig. 1. Overview of our proposed method. Estimating the relevance between the query and movies using the user-generated ranking as the correct answer.
When the model inputs a vector of queries and an arbitrary movie, it outputs the probability that the combination exists in the correct answer dataset.

method for retrieving multilingual documents from English
queries by using BERT to learn the relationships between
English queries and multilingual documents. The task of
retrieving Lithuanian text and audio documents using the query
and search corpus provided by IARPA’s MATERIAL program
revealed that this method enables more accurate retrieval than
other methods.

Since this research was conducted on movies, which are
visual images, it is difficult to deal with the contents of movies
in text; therefore, we used user-posted reviews. In addition, it
is difficult to compare the similarity of review sentences and
short queries because of the different natures of the sentences.
Therefore, we used Learning to Rank to match queries and
review sentences.

C. Learning to Rank

Learning to Rank is a method for solving ranking problems
using machine learning. It is also called ranking learning.
Three main approaches to Learning to Rank [10] are point-
wise, pairwise, and listwise methods. In this study, we used
the pointwise method. The Learning to Rank method aims to
rank highly relevant documents in response to a query, and it
is mainly used for information retrieval.

As an example of retrieving documents belonging to a
specific topic, Amir et al. [11] proposed a method that used
BERT and Learning to Rank to retrieve evidence to support a
claim. The task of retrieving sentences that provided evidence
using the FEVER dataset showed that this method performed
best compared to other methods.

Yu et al. [12] proposed a method using Learning to Rank
to find documents containing answers to a given question.

Experiments on a standard TREC benchmark dataset showed
that the method’s performance was comparable to state-of-the-
art methods used to retrieve answer sentences. Fabio et al. [13]
proposed a method using Learning to Rank for content-based
image retrieval. Evaluation experiments on two datasets, Corel
GALLERY Magic Stock Photo Library 2, and Caltech, showed
that the method outperformed traditional ranking methods.
Since the current research is concerned with the retrieval of
an item (i.e., a movie), we also discuss some examples of
applying Learning to Rank to item retrieval.

Shubhra et al. [14] proposed a method that applied
Learning to Rank for product retrieval on an e-commerce
site. They found that the method, which used LambdaMART,
a ranking learning method, provided the highest score for
a search task using randomly selected queries and product
information from the web. Blake et al. [15] proposed a method
using Learning to Rank to improve the accuracy of location
retrieval using inaccurate GPS data. Experiments using actual
check-in information about facilities in Manhattan showed that
this proposed method had the highest accuracy for locating
locations.

Prior to this study, Kurihara et al. [16] proposed a method
using Learning to Rank for movie retrieval based on review
information. They proposed a model that estimated the ranking
order of movies using a decision tree-based method called
LambdaMART. However, the current research aimed to make
it possible to rank movies in a new way by learning the
relevance of queries and items using a neural network.

III. METHOD

In this study, we propose a search algorithm that ranks
movies in response to an arbitrary keyword query. An overview
of the method is shown in Figure 1. The method first extracts
the titles and movies included in the rankings from user-
generated movie rankings. Next, both the words and movies in
the ranking titles are vectorized using BERT. The two vectors
are then concatenated and input into neural networks, which
learn them as a binary classification problem. That is, does a
movie appear in the rankings with this keyword in its title?

By inputting an arbitrary query and movie into the learned
model, it is possible to estimate how likely the movie will
appear in the rankings that include the query as a title. By
calculating the probability of appearance for all movies, a
movie ranking can be generated from an arbitrary query.

A. Vectorizing Movies Using Reviews

Movie websites contain movie reviews posted by various
users. In this study, it was assumed that user-posted re-
views contain information that represents the movie’s features.
Therefore, when representing a movie as a vector, a review
sentence for that movie was used instead of a movie’s metadata
or visual information.

First, the text was preprocessed to vectorize the review
sentences. Since there was a limit to the number of tokens
that BERT could vectorize, it was impossible to vectorize long
review sentences. Therefore, the review sentences were split
by punctuation marks, question marks, exclamation marks, and
other symbols. Unnecessary characters and symbols were also
removed.

Next, each preprocessed reviewed sentence was input into
BERT to calculate a 768-dimensional vector in a distributed
representation format. However, BERT could not convert long
sentences into distributed representations due to the upper
limit of computational complexity. Therefore, each sentence
r ∈ R(m) in the movie review m was vectorized and treated
as a feature vector of the movie by pooling it. When the
vector representing any review sentence r was denoted by
BERTr(r), the vector v(m) of movies m was defined as
follows:

v(m) =

∑
r∈R(m) BERTr(r)

|R(m)|
. (1)

This is the average of the vectors of all the review sentences
for that movie.

B. Formatting User-Generated Rankings as Training Data

To enable movie retrieval for a specific query, correct
training data linking the query to the movies was required.
Therefore, this study used data from websites where users
can submit their own movie rankings as the correct data. We
collected user-generated rankings registered in Yahoo! Movies
Japan for our experiment.

In recent years, sharing arbitrary movie rankings created
by individual users on the Internet has become common. For
example, it is easy to find rankings such as “My personal top
10 sad movies” on personal blogs. There are also many web

services that enable users to post such rankings. For example,
IMDB, the world’s largest movie review site, provides a
function called Watchlist1.” This feature enables users to create
a list of arbitrary titles and register their favorite movies on
the list. In Japan, Yahoo! Movies’ Round-Up enables users to
create a list with an arbitrary title and register up to 10 movies.
Many of these individually created rankings include titles such
as “The 10 best movies that make me cry” or “The 10 best
comedy movies I like.” In this study, the model learned the
relationship between queries and movies by using these kinds
of user-generated rankings as correct answer data.

The data were not clean because the general public creates
these user-generated rankings. They contain many irrelevant
descriptions and miscellaneous rankings and therefore require
preprocessing. First, we excluded rankings that were not based
on a specific point of view. These rankings vary widely; some
users simply rank the movies they like. For example, rankings
such as “10 Favorite Movies” or “My Top 10 Movies of
2002” do not contain a specific point of view. We manually
created dictionaries to eliminate such rankings. We eliminated
rankings that included years or specific words, such as “all-
time.” Words that were unlikely to be connected to the query
were then removed from the ranking titles. Specifically, these
were words such as “my,” “top,” and “movie,” and adverbs.

Next, the training data were formatted to train the model.
The training data consisted of input data and a correct answer
label. The title of the ranking and the movies in it were
vectorized using BERT. Each pair of movie and ranking title
vectors was combined and used as input to the neural network.
The correct answer label was a binary value of 0 or 1,
indicating whether the movie was included in the ranking.
Positive examples were generated using the movies included
in the ranking. Negative examples were randomly generated
from movies that were not included in the ranking.

C. Learning the Relationship Between Movies and Terms in
the Ranking Title

Relevance between a query and a movie is computable
by considering the ranking title as a keyword query. Here,
a simple neural network was used to calculate relevance.
When each movie and query has been represented as a vector
of distributed representations, the proposed method trains a
neural network as a binary classification task using these
vectors, as shown in Figure2. The task is to combine vectors
of movies and queries and then estimate whether the movie
will likely appear in a ranking that includes the query in its
title.

The input was a 1,536-dimensional vector: a combined pair
of a 768-dimensional vector representing a movie and a 768-
dimensional vector representing a ranking title. This neural
network consisted of four full-combination layers, as shown
in Table I. The output layer was binary since it performs a
binary classification of whether a movie appears in the ranking
whose title contains a given query.

1IMDB Watchlist: https://imdb.com/list/watchlist

“Titanic”

Is the movie “Titanic”
included in the
user-generated ranking
named “tearjerker”?

Estimation

“My top 10 tearjerker movies”

Fig. 2. Procedure for training the model to predict whether or not a
movie will appear in user-generated rankings that include the query
in the title.

TABLE I
DETAILS OF THE NETWORK LAYER USED FOR THE TRAINING.

Layer Type # Nodes Activation
Function

fully connected 1,536 Relu
fully connected 64 Relu
fully connected 64 Relu
fully connected 2 Sigmoid

The loss function loss(p, q) is expressed as

loss(p, q) = −
∑
x

p(x)log(q(x)), (2)

where p is the value of the correct answer, and q is the
predicted value. The values obtained by this loss function were
used to optimize the network model.

D. Generate Ranking for a Given Query

Using the language model learned this way, movies were
ranked based on arbitrary queries. The current method calcu-
lated the relevance of a query for all movies in a round-robin
fashion, and it ranked movies in order of relevance.

The incoming query was vectorized using BERT. The vector
was then combined with the vector of a certain movie. These
combined vectors were input into the trained model created
in section III-C. This calculated the relevance of the query to
the movie. This process was then repeated for all movies in
a brute-force manner. Since the relevance to all movies was
calculated, it could rank the movies for the query.

IV. EVALUATION

A participant experiment was conducted to verify whether
the movie ranking generated by the proposed method was
consistent with the user’s perception. For a particular query,

we listed the movies that appeared in the rankings generated
by each method and asked the participants to evaluate how
well they matched the query.

A. Compared Methods

Two hypotheses that can be linked to the technical contri-
bution of this study are as follows:
H1 : Review information can be used to search for movies

by keywords that do not appear in the movie synopsis or
metadata.

H2 : If each of the documents and queries about a movie is
represented as a vector, a simple similarity comparison,
such as cosine similarity, is not sufficient.

To test these hypotheses, we compared three variant meth-
ods and the proposed methods, as follows:

• Proposed Method: A method for matching movie vectors
generated from reviews with queries using deep learning.

• Movie Similarity: A method for comparing the similarity
between the movie vector generated from the reviews and
the query vector.

• Review Sentence Similarity: A method for comparing
the similarity between the review sentence vector and the
query vector.

• Metadata Only: A method using vectors of the movie’s
metadata, such as description text on movie sites.

Proposed Method uses deep learning to estimate the rel-
evance of the query vector to the vectors generated from the
movie reviews described in Section III. The method reflects
both hypotheses H1 and H2.

Movie Similarity compares the vectors generated from the
movie reviews and the query vectors using cosine similarity.
It takes a query as input and vectorizes the query using BERT.
Then, the cosine similarity between the query vector and the
movie vector is calculated. Based on the results, movies with
the highest similarity were output as a ranking. This method
reflects only hypothesis H1.

Review Sentence Similarity compares the similarity be-
tween the review vectors used to generate the movie and query
vectors. This calculates the cosine similarity between the vec-
tor of input queries and the vector of review sentences posted
on Yahoo! Movies with highly similar reviews are ranked
based on the similarity between the review text and the query.
When multiple reviews posted for the same movie appear in
the ranking, the similarity of the most similar review is treated
as the movie’s similarity. This method reflects hypothesis
H1. However, hypothesis H2 is based on the assumption that
superficial similarity is insufficient for comparing a query to
a movie. Thus, it corresponds to a review sentence to a query
instead of reaching a movie to a query.

Metadata Only uses only metadata and no reviews. The
information about a movie includes metadata, such as the
original title, production year, running time, production coun-
try, genre, director, executive producer, script, music, etc., and
text such as commentary, synopsis, etc. First, text matching is
performed between the input query and the above information.

TABLE II
QUERIES USED IN THE EXPERIMENT AND THEIR FEATURES

Query Features
Tearjerker

Emotion after watching the movieLaughable
Shocking
Suitable for dating Situation or scene when watching the movieSuitable for children
Suspense Category of the movieAnimation
Ghibli

Content of the movieSurprise ending
Takeshi Kitano

If there are any matched movies, the cosine similarity between
the query vector and the vectors of the commentary and
synopsis sentences of those movies is calculated. Movies with
high similarity are ranked in the output. This method does not
support either hypothesis H1 or H2.

B. Dataset

We collected about 15,000 movies with 10 or more reviews
from a certain real movie review site (anonimized). We col-
lected about 40,000 movie reviews and about 10,000 user-
generated rankings from Round-Up, Yahoo! Movies as correct
answers for training. We used about 7,000 of these data for
our research, excluding rankings that did not include specific
viewpoints.

C. Experimental Tasks

A subject experiment was conducted online in which partic-
ipants were asked to label the relevance between the query and
the movie. Ten participants performed the labeling. First, par-
ticipants were given a link to a premade Google spreadsheet.
Each sheet contained a query with up to 40 movie titles, one
for each row. This is a mixture of the top 10 movie rankings
output by each of the four methods for a single query. The
participants rated how closely each movie related to the query
on a 5-point scale from one to five. Participants were allowed
to search for movie information on the Internet if they were
not familiar with the movie.

We prepared 10 queries in advance. The actual queries are
shown in Table II. Two participants labeled 80 movies for
two queries.

D. Implementation

We implemented a system that could calculate the relevance
between a given query and movies for each of the comparison
methods. The system inputs a query and output the top 10
rankings of each method. The BERT Japanese pretrained
model2 was used as the BERT model to vectorize the query.
MeCab3, a famous Japanese morphological analyzer was used
as the tokenizer for the BERT vectorization. As a vocabulary
dictionary for MeCab, mecab-ipadic-neologd4, which supports
new words and proper expressions, was used. Keras, a Python

2Kurohashi Lab. Kyoto University: https://nlp.ist.i.kyoto-u.ac.jp/EN/
3MeCab: Yet Another Part-of-Speech and Morphological Analyzer:

https://taku910.github.io/mecab/
4mecab-ipadic-NEologd: Neologism dictionary for MeCab

https://github.com/neologd/mecab-ipadic-neologd

TABLE III
PRECISION AT k AND NDCG FOR EACH METHOD

p@1 p@5 p@10 nDCG
Proposed Method 0.50 0.56 0.58 0.64
Metadata Only 0.50 0.46 0.40 0.60
Movie Similarity 0.20 0.24 0.27 0.47
Review Sentence Similarity 0.80 0.74 0.72 0.75

library for neural networks, was used for implementing the
ranking models.

E. Experimental Results

This section describes the results of the subject experiment.
We compared the methods by using three metrics: P@k for the
precision of each method, nDCG (normalized Discounted Cu-
mulative Gain) for the ranking accuracy, and the participants’
average rating.

First, the top part of the ranking of each method was
evaluated according to precision. Precision is a measure of how
correct the answers were included at the top of the ranking. In
this experiment, a rating of three or higher on the participant’s
5-point scale was considered correct, and the accuracy was
calculated based on this number of correct answers. p@k
(precision at k) represents the precision of the movies up to
the k position in the ranking.

The precision for each method is shown in Table III. Review
Sentence Similarity was the most accurate p@1, p@5, and
p@10. The proposed method was ranked second for all p@1,
p@5, and p@10. Movie Similarity had the lowest accuracy
for all p@1, p@5, and p@10.

Next, nDCG was used to check the accuracy of the ranking.
The nDCG for each method is shown in Table III. The most
accurate method was the Review Sentence Similarity, with a
score of 0.75. In contrast, the Movie Similarity method had
the lowest nDCG score of 0.47.

F. Ratings by Participants for Each Query

In this experiment, participants were asked to rate on a 5-
point scale how closely a movie related to a given query. The
average of the ratings by the participants for each method
and each query is shown in Table IV. For the queries “Tear-
jerker,” “Suspense,” “Suitable for dating,” and “Laughable,”
the proposed method was the most accurate in finding the
highest-rated movies. For the queries “Anime,” “Shocking,”
and “Takeshi Kitano,” the method using Metadata Only was
the most accurate. For all other queries, the Review Sentence
Similarity method was the most accurate.

As an example of the output rankings, Table V shows the top
10 movies for the query “tearjerker” by the proposed and the
baseline methods. In this result, participants labeled all movies
found by the proposed method as “tearjerker” movies (i.e.,
all movies were rated at least three). The proposed method
seemed to be well-suited for searches based on the viewer’s
impression of the movie as a whole.

In contrast, as an example of the case of the proposed
method not working well, Table VI shows the ranking for the

TABLE IV
AVERAGE PARTICIPANTS’ RATING OF THE MOVIES IN THE TOP 10 RESULTS FOR QUERIES (5-POINT SCALE, 1 TO 5)

Tearjerker Animation Suspense Ghibli Suitable
for dating

Suitable for
children Shocking Surprise

ending
Takeshi
Kitano Laughable

Proposed Method 3.7 2.2 3.6 1.6 3.5 3.8 2.4 3.9 1.5 3.0
Metadata Only 2.1 3.8 3.1 1.9 1.9 1.7 3.7 2.9 4.0 1.7
Movie Similarity 2.1 2.2 1.7 1.7 2.9 2.7 2.4 2.9 1.8 1.7
Review Sentence Similarity 2.9 2.6 3.6 4.3 3.5 4.2 3.4 4.5 3.6 1.7

TABLE V
EXAMPLE OF RESULTS THAT THE PROPOSED METHOD WORKED WELL (FOR THE QUERY “TEARJERKER,” RATING BY PARTICIPANTS WAS ON A 5-POINT

SCALE, 1 TO 5.)

Proposed Method Movie Similarity
Movie title Rating Movie title Rating

What Dreams May Come 3.0 PPiL GU 2.0
Gray Sunset 3.5 Yellow Hair 1.5
Glory Daze 3.0 Columbo Goes to the Guillotine 2.0
The Boy Who Could Fly 4.0 Lightereul kyeora 1.5
Crayon Shin-chan: The Adult Empire Strikes Back 4.5 Nan va Koutcheh 2.0
Pay It Forward 3.5 New Deka Matsuri 1.5
It’s a Wonderful Life 4.0 Human Traffic 3.0
Jack 3.5 JUNGLE JUICE 2.0
Life is Beautiful 4.0 Rainy Dog 3.0
The Notebook 4.0 Bad Reputation in the Marketplace 2.0

query “Takeshi Kitano” (note that because both the query and
dataset were in Japanese, many Japanese movies were included
in the search results). In this case, the Metadata Only method
was highly accurate, but methods using review did not work
well. The proposed method found many animation movies not
related to the query.

V. DISCUSSION

This section discusses the experimental results, the effec-
tiveness of the methods, and which methods are suitable for
each query and task. Overall, the proposed method was more
accurate for retrieval than the cosine similarity or metadata
methods. However, a simple similarity calculation between a
single sentence in a movie review and a keyword query was
even more accurate.

One possible cause of this was the limitation of representing
the entire movie by a single vector. If all reviews for a movie
were vectorized and summarized by pooling, the overall trend
of the movie (i.e., sad, funny, and warm) might remain as a fea-
ture. However, individual scenes and minor impressions would
be diluted when summarizing many opinions. Even under
these conditions, the proposed method was more accurate than
simple cosine similarity. The vector properties were different
between a vector of short keyword queries and a vector of
longer reviews from multiple people. Therefore, the method
of calculating the validity of the combination using a neural
network would have been effective, since simply taking the
cosine similarity would not correctly calculate the similarity.

The method of Review Sentence Similarity is considered to
be more accurate because a highly granular variance represen-
tation can be obtained from the review sentences. The nDCG
had the highest Review Sentence Similarity, confirming the
effectiveness of using reviews. This was probably because, in
our experimental search task, it was more important whether

there was an element applicable to the query than the overall
trend of the movie. For example, whether the movie has a
surprise ending depends not on the movie as a whole, but on a
single scene. In this case, it was possible to determine whether
the review included a description of the turnover scene without
reading reviews for the entire movie. In such a case, it would
simply be more accurate not to characterize the entire movie.

The scores for each query indicated that the effective
methods varied depending on the query type. The metadata-
based methods scored higher for queries for which there was
likely to be information in the metadata, such as “Animation,”
“Shocking,” and “Takeshi Kitano.” However, the review-based
method scored higher for queries that describe the nature of
the movie, such as “Tearjerker,” “Laughable,” “Suitable for
dating,” and “Surprise ending.” This shows that using reviews
makes it possible to search for movies based on information
that does not exist in the metadata.

VI. CONCLUSION

This paper proposes a method for calculating the relevance
between a certain keyword query and movies based on user-
generated rankings and movie reviews. The model learned the
relationship between words in the ranking title and movie
reviews using neural networks that used data taken from a
user-generated movie ranking forum. Learning through the
task of estimating whether a movie is included in the ranking
with a given title enabled the model to rank movies.

To verify the usefulness of the model, we conducted subject
experiments. Participants were asked to score the relevance
between the given queries and movies ranked high by each
comparison method. Experimental results showed that the pro-
posed method, which uses user-generated reviews, was more
accurate than traditional simple cosine similarity; however, it
was even more accurate to split reviews into sentences and

TABLE VI
EXAMPLE OF A CASE WHERE THE METADATA ONLY METHOD WORKED WELL (FOR THE QUERY “TAKESHI KITANO,” RATING BY PARTICIPANTS WAS ON

A 5-POINT SCALE, 1 TO 5.)

Proposed Method Metadata Only
Movie title Rating Movie title Rating

Crayon Shin-chan: Unkokusai’s Ambition 1.0 Kikujiro 4.5
Case Closed: Captured in Her Eyes 1.0 Sonatine 5.0
Godzilla, Mothra and King Ghidorah 1.5 Boiling Point 3.5
Air 2.0 Zatoichi 4.0
Lupin III: Hemingway Papers 1.5 Beyond Outrage 4.0
Iki-jigoku 2.0 Outrage Coda 4.0
Mosquito 1.0 BROTHER 3.5
Star Wars: Episode V 1.0 TAKESHIS’ 4.5
RahXephon 2.0 HANA-BI 3.0
Lupin III: The Castle of Cagliostro 1.5 OUTRAGE 4.0

use the maximum similarity method for each of them. We also
found that for some tasks, using metadata was more accurate.

We plan to use the proposed model to determine whether
a given movie appears in a given titled ranking or not.
Specifically, we are considering using this as a fine-tuning
task for the language model.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grants Num-
bers 21H03775, 21H03774, and 22H03905.

REFERENCES

[1] T. Miyashita, Y. Shoji, S. Fujita, and M. J. Dürst, “Movie keyword
search using large-scale language model with user-generated rankings
and reviews,” in The 25th International Conference on Information
Integration and Web Intelligence, 2023, pp. 249–255.

[2] J. Ramanand, K. Bhavsar, and N. Pedanekar, “Wishful thinking - finding
suggestions and ’buy’ wishes from product reviews,” in Proc. of the
NAACL HLT 2010 Workshop on Computational Approaches to Analysis
and Generation of Emotion in Text, 2010, pp. 54–61.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proc. of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, 2019, pp. 4171–4186.

[4] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings
using Siamese BERT-networks,” in Proc. of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), 2019, pp. 3982–3992.

[5] Z. Liu, D. Huang, K. Huang, Z. Li, and J. Zhao, “Finbert: A pre-trained
financial language representation model for financial text mining,” in
Proc. of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20, 2020, pp. 4513–4519.

[6] W. Sakata, T. Shibata, R. Tanaka, and S. Kurohashi, “Faq retrieval using
query-question similarity and bert-based query-answer relevance,” in
Proc. of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2019, pp. 1113–1116.

[7] W. Yang, H. Zhang, and J. Lin, “Simple applications of bert for ad hoc
document retrieval,” arXiv preprint arXiv:1903.10972, 2019.

[8] Y. Shao, J. Mao, Y. Liu, W. Ma, K. Satoh, M. Zhang, and S. Ma, “Bert-
pli: Modeling paragraph-level interactions for legal case retrieval.” in
IJCAI, 2020, pp. 3501–3507.

[9] Z. Jiang, A. El-Jaroudi, W. Hartmann, D. Karakos, and L. Zhao, “Cross-
lingual information retrieval with BERT,” in Proc. of the workshop
on Cross-Language Search and Summarization of Text and Speech
(CLSSTS2020), 2020, pp. 26–31.

[10] T.-Y. Liu, “Learning to rank for information retrieval,” Found. Trends
Inf. Retr., vol. 3, no. 3, pp. 225–331, 2009.

[11] A. Soleimani, C. Monz, and M. Worring, “Bert for evidence retrieval
and claim verification,” in Advances in Information Retrieval, J. M.
Jose, E. Yilmaz, J. Magalhães, P. Castells, N. Ferro, M. J. Silva, and
F. Martins, Eds., 2020, pp. 359–366.

[12] L. Yu, K. Hermann, P. Blunsom, and S. Pulman, “Deep learning for an-
swer sentence selection,” Proc. of the Deep Learning and Representation
Learning Workshop: NIPS-2014, 2014.

[13] F. F. Faria, A. Veloso, H. M. Almeida, E. Valle, R. d. S. Torres,
M. A. Gonçalves, and W. Meira, “Learning to rank for content-based
image retrieval,” in Proc. of the International Conference on Multimedia
Information Retrieval, 2010, pp. 285–294.

[14] S. K. Karmaker Santu, P. Sondhi, and C. Zhai, “On application of learn-
ing to rank for e-commerce search,” in Proc. of the 40th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2017, pp. 475–484.

[15] B. Shaw, J. Shea, S. Sinha, and A. Hogue, “Learning to rank for spa-
tiotemporal search,” in Proc. of the Sixth ACM International Conference
on Web Search and Data Mining, 2013, pp. 717–726.

[16] K. Kurihara, Y. Shoji, S. Fujita, and M. J. Dürst, “Learning to rank-
based approach for movie search by keyword query and example query,”
in The 23rd International Conference on Information Integration and
Web Intelligence. New York, NY, USA: Association for Computing
Machinery, 2021, pp. 137–145.

